ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Multidimensional Inverse Problem with Goursat Type Conditions

Author(s):

Taalaibek Omurov

Faculty of Mathematics, Informatics and Cybernetics,
Kyrgyz National University named after J. Balasagyn
Kyrgyzstan, Bishkek
Doctor of Physical and Mathematical Sciences, professor

Amantur Ryspaev

Faculty of Mathematics, Informatics and Cybernetics,
Kyrgyz National University named after J. Balasagyn
PhD in Physics and Mathematics, doctoral

Ryspaev.Amantur@yandex.ru

Maksat Omurov

Faculty of Information and Innovation Technologies
Kyrgyz National University named after J. Balasagyn
Teacher

m_omurov@mail.ru

Abstract:

In this work by analytic-regularization methods we investigate a multidimensional inverse problem with Goursat type conditions, where a two-dimensional first kind Volterra-Fredholm integral equation degenerates. On the base of developed system algorithm the numerical method for solving this equation is elaborated, such that the constructed difference scheme analogues are stable.

Keywords

References:

  1. Aparsin A. S. Neklassicheskie uravnenia Volterra I roda: teoria i chislennye metody [Nonclassical Volterra equations of the first kind: theory and numerical methods]. Novosibirsk, Nauka. Syb. publ. firm RAN, 1999. 193 p. (In Russian)
  2. Belotserkovsky S. M., Lifanov I. K. Chislennye metody v singulyarnih integralnyh uravneniyah [Numerical Methods for Singular Integral Equations]. M. :Nauka, 1985. 179 p. (In Russian)
  3. Buhkgeim A. L. Uravnenia Volterra i obratnye zadachi. [Inverse problems and Volterra equations] Novosibirsk: Nauka, 1983. -207 p
  4. Denisov A. M. [About the approximate solution of the Volterra equation of the first kind, associated with an inverse problem for the heat equation]. “Vest. MGU “ [Calcul. Math. and cybernetics], 1980. No 3. pp. 49-52 (In Russian)
  5. Dmitriev V. I. [Inverse problems of electromagnetic methods of geophysics]. “ Ill-posed problem of natural science”, Moscow. [Publishing house of the Moscow University], 1987. pp. 54-76 (In Russian)
  6. Lavrentiev M. M. [Regularization of operator equations of Volterra type]. “The problems of mathematical physics and computational mathematics”[Moscow: Nauka], 1977. pp. 199-205. (In Russian)
  7. Markova E. V. [Features of the numerical solution of Volterra integral equations the first kind with variable lower limit]. Materialy XXVIII conf. Nauchnoi molodejhi Irkutsk: ISEM SO RAN, 1999. pp. 144-152. (In Russian)
  8. Omurov T. D., Ryspaev A. O., Omurov M. T. Obratnye zadachi v prilozheniyah matematicheskoi fiziki [Inverse problems in applications of mathematical physics]. Bishkek, 2014. 192 p
  9. Omurov T. D. Metody regulyarizacii integralnykh uravnenii Volterra pervogo i tretyego roda [Methods of regularization of Volterra integral equations of the first and the third kind]. Bishkek, Ilim, 2003. 162 p
  10. Romanov V. G. Obratnye zadachi dlya differencialnih uravneniy [Inverse problems for differential equations] - N. : NGU, 1973. 225 p
  11. Sergeev V. O. Regularization of Volterra equations of the first kind // DAN SSSR, 1971. T. 197. no 3. pp. 531-534. (In Russian)
  12. Trenogin V. A. Funkcionalniy analiz [Functional analysis] Moscow, Nauka, 1980. 496 p. (In Russian)

Full text (pdf)