Development of the Topological Entropy Conception for Dynamical Systems with Multiple Time
Author(s):
Mikhail M. Anikushin
demolishka@gmail.com
Volker Reitmann
70 corp.3, Botanicheskaya st,
Peterhof, Saint-Petersburg,
198516, Russia
Saint-Petersburg State University
professor of the Department of Applied Cybernetics
Prof. Dr.
vreitmann@aol.com
Abstract:
We study the topological entropy for dynamical systems
with discrete or continuous multiple time. Due to the generalization
of a well-known one time-dimensional result we show that the
definition of topological entropy, using the approach for subshifts,
leads to zero entropy for many systems different from subshift.
We define a new type of relative topological entropy to avoid this
phenomenon. The generalization of Bowen's power rule allows us to
define topological and relative topological entropies for systems
with continuous multiple time. As an application we find the relation
between relative topological entropy and controllability of linear
system with continuous multiple time.
Keywords
- dynamical system with multiple time
- multitime controllability
- topological entropy
References:
- Boichenko, V. A., Leonov, G. A. Lyapunov’s direct method in estimates of topological entropy, Zap. nauchn. sem. POMI, 1995, vol. 231, pp. 62-75. (In Russ. )
- Gaishun, I. V., Kirillova, F. M. Vpolne razreshimye mnogomernye differencial'nye uravneniya[Completely Integrable Differential Equations], Nauka i Tekhnika Publ., 1983
- Kolmogorov, A. N. New Metric Invariant of Transitive Dynamical Systems and Endomorphisms of Lebesgue Spaces, DAN SSSR, 1958, vol. 119, no. 5, pp. 861-864. (In Russ. )
- Lakshtanov, E. L., Langvagen, E. S. Criteria for infinity value of topological entropy of multidimensional cellular automata, Problemy peredachi informacii, 2004, vol. 40, no. 2, pp. 70-72. (In Russ. )
- Lakshtanov, E. L., Langvagen, E. S. Entropy of multi-dimensional cellular automata, Problemy peredachi informacii, 2006, vol. 42, no. 1, pp. 43-51. (In Russ. )
- Sinaj, YA. G. On the Notion of Entropy of a Dynamical System, DAN SSSR, 1959, vol. 124, no. 4, pp. 768-771. (In Russ. )
- Sinaj, YA. G. Sovremennye problemy ehrgodicheskoj teorii[Modern problems of the ergodic theory], Moscow, Fizmatlit Publ., 1995
- Adler, R. L., Konheim, A. G., McAndrew, M. H. Topological entropy, Trans. Amer. Math. Soc. , 1965, vol. 114, no. 2, pp. 309-319
- Anosov, D. V. Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. , 1967, vol. 90, pp. 3-210
- Boichenko, V. A., Leonov, G. A., Reitmann, V. Dimension Theory for Ordinary Differential Equations, Teubner Wiesbaden, 2005
- Bowen, R. Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. , 1971, vol. 153, no. 2, pp. 401-414
- Ito, S. An estimate from above for the entropy and the topological entropy of a C1-diffeomorphism, Proc. Japan Acad. , 1970, vol. 46, no. 3, pp. 226-230
- Kuznetsov, N. V. The Lyapunov dimension and its estimation via the Leonov method, Physics LettersA, 2016, vol. 380, no. 25, pp. 2142-2149
- Kuznetsov, N. V., Alexeeva, T. A., Leonov, G. A. Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations, Nonlinear Dynamics, 2016, pp. 1-7 (http://dx.doi.org/10.1007/s11071-016-2678-4)
- Leonov, G. A. Formulas for the Lyapunov dimension of attractors of the generalized Lorenz system, Doklady Mathematics, 2013, vol. 87, no. 3, pp. 264-268
- Leonov, G. A., Kuznetsov, N. V., Korzhemanova, N. A., Kusakin, D. V. Lyapunov dimension formula for the global attractor of the Lorenz system, Communications in Nonlinear Science and NumericalSimulation, 2016, http://dx.doi.org/10.1016/j.cnsns.2016.04.032
- Leonov, G. A., Alexeeva, T. A., Kuznetsov, N. V. Analytic exact upper bound for the Lyapunov dimension of the Shimizu-Morioka system, Entropy, 2015, vol. 17, no. 7, pp. 5101-5116
- Lind, D., Schmidt, K. Symbolic and algebraic dynamical systems, in book: Handbook of DynamicalSystems, 2002, vol. 1, pp. 765-812
- Millionshchikov, V. M. A formula for the entropy of a smooth dynamical system Differentsial'nyeUravneniya, 1976, vol. 12, pp. 2188-2192
- Newhouse, S. E. Entropy and volume, Ergodic Theory and Dynamical Systems, 1988, vol. 8, no. 8, pp. 283-299
- Oseledets, V. I. A multiplicative ergodic theorem: Lyapunov characteristic exponents for dynamical systems, Trudy Moskovskogo Matematicheskogo Obshchestva, 1968, vol. 19, pp. 179-210
- Pesin, Y. B. Dimension theory in dynamical systems: contemporary views and applications, University of Chicago Press, 2008
- Schmidt, K. Multi-dimensional symbolic dynamical systems, in book: Codes, Systems, and GraphicalModels, Springer, 2001, pp. 67-82
- Sun, H. Topological entropy of linear systems and its application to optimal control, Master's Thesis, Hong Kong University of Science and Technology, 2008
- Udriste, C. Multitime controllability, observability and bang-bang principle, J. Optim. Theory Appl. , 2008, vol. 139, no. 1, pp. 141-157