ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Surface and Internal Waves: the Two-Dimensional Problem of a Two-Layer Flow About an Interface-Piercing Body

Author(s):

Nikolay Germanovich Kuznetsov

Laboratory for Mathematical Modelling of Wave Phenomena
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences
V.O., Bol'shoy pr. 61, St. Petersburg 199178, Russian Federation
Principal research scientist
Doctor of Science (Phys.-Math.)

kuzn-nikolay@yandex.ru

Oleg Valerievich Motygin

Laboratory for Mathematical Modelling of Wave Phenomena
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences
V.O., Bol'shoy pr. 61, St. Petersburg 199178, Russian Federation
Chief research scientist
Docent, Doctor of Science (Phys.-Math.)

o.v.motygin@gmail.com

Abstract:

The linear two-dimensional boundary value problem under consideration describes surface and internal waves due to the forward motion of a body in two superposed layers of fluid. The body is totally submerged and intersects the interface between layers having different densities. Two well-posed formulations of the problem are proposed; in these, along with the Laplace equation, boundary conditions, coupling conditions on the interface and conditions at infinity, a pair of supplementary conditions is imposed at the points, where the body contour intersects the interface. For one of the well-posed formulations of the problem (when the difference between horizontal components of momentum is given at each of these points) the existence of a unique solution is proved for all values of the parameters involved with the exception for a set (possibly empty) which is nowhere dense.

Keywords

References:

  1. Lamb H. Hydrodynamics. Cambridge, Cambridge University Press, 1932
  2. Peters A. S., Stoker J. J. The motion of a ship, as a floating rigid body, in a seaway. Comm. Pure Appl. Math. 10 (1957), 399-490
  3. Stoker J. J. Water waves. The mathematical theory with applications. New York, Intersci. Publ., 1957
  4. Wehausen J. V., Laitone E. V. Surface waves. Handbuch der Physik 9 (1960), 446-778, Berlin, Springer
  5. Kostyukov A. A. Teoriya korabel'nykh voln i volnovogo soprotivleniya [Theory of ship waves and wave resistance]. Leningrad, Sudpromgiz, 1959
  6. Sretenskii L. N. Teoriya volnovykh dvizhenii zhidkosti [Theory of the wave motion of a fluid]. Moscow, Nauka, 1977
  7. Newman J. N. Marine hydrodynamics. Cambridge, MA, MIT Press, 1977
  8. Newman J. N. The theory of ship motions. Adv. Appl. Mech. 18 (1978), 221-283
  9. Veden'kov V. E., Smirnov G. V., Borisov T. N. Dinamika poverkhnostnykh i vnutrennikh voln [Dynamics of surface and internal waves]. Vladivostok, Dal'nauka, 1999
  10. Vasil'eva V. V., Shkadova S. V. Vnutrennie volny [Internal waves]. St. Petersburg, SPbGMTU, 2001
  11. Kuznetsov N., Maz'ya V., Vainberg B. Linear water waves: A mathematical approach. Cambridge, Cambridge University Press, 2002
  12. Pagani C. D., Pierotti D. Exact solution of the wave-resistance problem for a submerged cylinder. II. The nonlinear problem. Arch. Rat. Mech. Anal. 149 (1999), 289-327
  13. Pagani C. D., Pierotti D. On solvability of the nonlinear wave-resistance problem for a surface-piercing symmetric cylinder. SIAM J. Math. Anal. 32 (2000), 214-233
  14. Pagani C. D., Pierotti D. The forward motion of an unsymmetric surface-piercing cylinder: the solvability of nonlinear problem in the supercritical case. Quart. J. Mech. Appl. Math. 54 (2001), 1-22
  15. Pagani C. D., Pierotti D. The subcritical motion of a semisubmerged body: solvability of the free-boundary problem SIAM J. Math. Anal. 36 (2004), 69-93
  16. Duchene V. Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon. Nonlinearity 24 (2011), 2281-2323
  17. Mercier M., Vasseur R., Dauxois T. Resurrecting dead-water phenomenon. Nonlinear Processes Geophys. 18 (2011), 193-208
  18. Yeung R. W., Nguyen T. C. Waves generated by a moving source in a two-layer ocean of finite depth. J. Eng. Math. 35 (1999), 85-107
  19. Miloh T., Tulin M., Zilman G. Dead-water effects of a ship moving in stratified seas. J. Offshore Mech. Arct. Eng. 115 (1993), 105-110
  20. Ekman V. W. On dead water. Scientific Results of the Norwegian North Polar Expedition 5, Christiania, 1904, 1-152
  21. Sretenskii L. N. O volnakh na poverkhnosti razdela dvukh zhidkostey s primeneniem k yavleniyu “mertvoi vody” [On the interface waves in a two-layer fluid: application to the “dead-water” phenomenon]. Zhurnal geofiziki 4 (1934), 332-370
  22. Sretenskii L. N. O volnovom soprotivlenii korablya pri nalichii vnutrennikh voln [On the wave resistance of a ship in the presence of internal waves]. Izvestia AN USSR, Mekh. mashinostroenie. No. 1 (1959), 56-63
  23. Uspenskii P. N. O volnovom soprotivlenii korablya pri nalichii vnutrennikh voln [On the wave resistance of a ship in the presence of internal waves]. Trudy Morsk. gidrofiz. Inst. 18 (1959), 68-85
  24. Gorodtsov V. A., Teodorovich E. V. K teorii volnovogo soprotivleniya (poverkhnostnye i vnutrennie volny) [On the theory of wave resistance (surface and internal waves)]. N. E. Kochin i razvitie mekhaniki [N. E. Kochin and the development of mechanics]. Moscow, Nauka, 1984
  25. Stepanyants Yu. A., Sturova I. V., Teodorovich E. V. Lineinaya teoriya generatsii poverkhnostnykh i vnutrennikh voln [Linear theory for the generation of surface and internal waves]. Itogi nauki i tekhniki. Mekhanika zhidkosti i gaza. [Summaries in science and technology. Fluid and gas mechanics]. 21 (1987), 93-179. Moscow, VINITI
  26. Motygin O., Kuznetsov N. The wave resistance of a two-dimensional body moving forward in a two-layer fluid. J. Eng. Math. 32 (1997), 53-72
  27. Motygin O. V. Razreshimost' granichnykh integral'nykh uravnenii dlya zadachi o dvizhenii tela v dvusloinoi zhidkosti [Solvability of boundary integral equations for the problem of a body moving in a two-layer fluid]. Zhurn. vychisl. matem. i matem. fiziki. 43 (2003), 279-286; Computational Mathematics and Mathematical Physics 43(2) (2003), 268-275
  28. Motygin O., Kuznetsov N. On the forward motion of an interface-crossing body in a two-layer fluid: the role of asymptotics in problem's statement. J. Eng. Math. 69 (2011), 113-134
  29. Nazarov S. A., Plamenevskii B. A. Ellipticheckie zadachi v oblastyakh s kusochno gladkoi granitsei [Elliptic boundary value problems in piecewise smooth domains]. Moscow, Nauka, 1991
  30. Nicaise S., Sandig A. M. General interface problems. 1, 2. Math. Meth. Appl. Sci. 17 (1994), 395-450
  31. Kuznetsov N. G., Maz'ya V. G. Ob odnoznachnoi razreshimosti ploskoi zadachi Neimana-Kel'vina [On unique solvability of the plane Neumann-Kelvin problem]. Mat. Sborn. 135 (1988) 440-462; Mathematics of the USSR-Sbornik (1989), 63(2) 425-446
  32. Anastassiou G. A., Dragomir S. S. On some estimates of the remainder in Taylor’s formula. J. Math. Anal. Appl. 263 (2001), 246-263
  33. Vainberg B. R., Maz'ya V. G. K ploskoi zadache o dvizhenii pogruzhennogo v zhidkost' tela [On the two-dimensional problem of an immersed body in the forward motion in a fluid]. Trudy Mosk. mat. obsch. 28 (1973), 35-56
  34. Ursell F. Mathematical note on the two-dimensional Kelvin-Neumann problem. Proc. 13th Symp. Naval Hydrodynamics (Tokyo, 1980). Shipbuild. Res. Assoc. Japan (1981), 245-251
  35. Suzuki K. Numerical studies of the Neumann-Kelvin problem for a two-dimensional semisubmerged body. Proc. 3d Int. Conf. Numerical Ship Hydrodynamics. Paris, Bassin d’Essais des Carenes, 1982, 83-95
  36. Motygin O., Kuznetsov N. The problem of steady flow over a two-dimensional bottom obstacle. Around the Research of Vladimir Maz'ya. II, Partial Differential Equations. N. Y., Springer, 2010, 253-274
  37. Motygin O. Uniqueness and solvability in the linearized two-dimensional problem of a body in a finite depth subcritical stream. Euro. J. Appl. Math. 10 (1999), 141-156
  38. Lahalle D. Calcul des efforts sur un profil portant d’hydroptè re par couplage é lé ments finis - repré sentation inté grale. Rapport de Recherche 187, Paris, ENSTA, 1984
  39. Wigley N. M. Mixed boundary value problems in plane domains with corners. Math. Z. 115 (1970), 33-52
  40. Maz'ya V. G. Granichnye integral'nye uravneniya [Boundary integral equations]. Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamental'nye napravleniya [Summaries in science and technology. Contemporary problems in mathematics. Fundamental trends]. 27 (1988), 132-228. Moscow, VINITI
  41. Carleman T. Ü ber das Neumann-Poincaresche Problem fü r ein Gebiet mit Ecken. Uppsala, Å lmqvist & Wiksell, 1916
  42. Werner P. A Green's function approach to the potential flow around obstacles in a two-dimensional channel. Methoden und Verfahren der math. Physik. 37 Frankfurt am Main, P. Lang, 1991
  43. Trofimov V. P. O kornevykh podprostranstvakh operatorov, analiticheski zavisyaschikh ot parametra [On the root subspaces of operators analytically depending on a parameter]. Matem. Issled. 3(9) (1968), 117-125
  44. Motygin O. V., McIver P. A uniqueness criterion for linear problems of wave-body interaction. IMA J. Appl. Math. 68 (2003), 229-250
  45. Kanatnikov A. N., Krischenko A. P. Lineinaya algebra [Linear algebra]. Moscow, MGTU, 2002
  46. Abramowitz M., Stegun I. Handbook of Mathematical Functions. N. Y., Dover, 1965
  47. Krein S. G., Trofimov V. P. O golomorfnykh operator-funktsiyakh neskol'kikh kompleksnykh peremennykh [On holomorphic operator-functions in multiple complex variables]. Func. anal. Appl. 3(4) (1969), 85-86; Functional Analysis and Its Applications, 3(4) (1969), 330-331
  48. Krein S. G., Trofimov V. P. O neterovykh operatorakh, golomorfno zavisyasch ot parametrov [On Noether operators depending on parameters holomorphically]. Trudy Mat. fakul'teta VGU. Trudy seminara po funkts. analizu. Sborn. statei po funkts. prostranstvam i oper. uravneniyam [Proc. Math. Faculty VSU. Proc. seminar in FA. Papers on func. spaces and oper. equations]. Voronezh, 1970, 63-85
  49. Chirka E. M. Kompleksnye analiticheskie mnozhestva [Complex analytic sets]. Moscow, Nauka, 1985

Full text (pdf)