Surface and Internal Waves: the Two-Dimensional Problem of a Two-Layer Flow About an Interface-Piercing Body
Author(s):
Nikolay Germanovich Kuznetsov
Laboratory for Mathematical Modelling of Wave Phenomena
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences
V.O., Bol'shoy pr. 61, St. Petersburg 199178, Russian Federation
Principal research scientist
Doctor of Science (Phys.-Math.)
kuzn-nikolay@yandex.ru
Oleg Valerievich Motygin
Laboratory for Mathematical Modelling of Wave Phenomena
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences
V.O., Bol'shoy pr. 61, St. Petersburg 199178, Russian Federation
Chief research scientist
Docent, Doctor of Science (Phys.-Math.)
o.v.motygin@gmail.com
Abstract:
The linear two-dimensional boundary value problem under consideration describes
surface and internal waves due to the forward motion of a body in two superposed
layers of fluid. The body is totally submerged and intersects the interface between
layers having different densities. Two well-posed formulations of the problem are
proposed; in these, along with the Laplace equation, boundary conditions, coupling
conditions on the interface and conditions at infinity, a pair of supplementary
conditions is imposed at the points, where the body contour intersects the
interface. For one of the well-posed formulations of the problem (when the
difference between horizontal components of momentum is given at each of these
points) the existence of a unique solution is proved for all values of the
parameters involved with the exception for a set (possibly empty) which is nowhere
dense.
Keywords
- boundary value problem
- coupling conditions
- forward motion of a body
- interface
- internal waves
- surface waves
- well-posed setting
References:
- Lamb H. Hydrodynamics. Cambridge, Cambridge University Press, 1932
- Peters A. S., Stoker J. J. The motion of a ship, as a floating rigid body, in a seaway. Comm. Pure Appl. Math. 10 (1957), 399-490
- Stoker J. J. Water waves. The mathematical theory with applications. New York, Intersci. Publ., 1957
- Wehausen J. V., Laitone E. V. Surface waves. Handbuch der Physik 9 (1960), 446-778, Berlin, Springer
- Kostyukov A. A. Teoriya korabel'nykh voln i volnovogo soprotivleniya [Theory of ship waves and wave resistance]. Leningrad, Sudpromgiz, 1959
- Sretenskii L. N. Teoriya volnovykh dvizhenii zhidkosti [Theory of the wave motion of a fluid]. Moscow, Nauka, 1977
- Newman J. N. Marine hydrodynamics. Cambridge, MA, MIT Press, 1977
- Newman J. N. The theory of ship motions. Adv. Appl. Mech. 18 (1978), 221-283
- Veden'kov V. E., Smirnov G. V., Borisov T. N. Dinamika poverkhnostnykh i vnutrennikh voln [Dynamics of surface and internal waves]. Vladivostok, Dal'nauka, 1999
- Vasil'eva V. V., Shkadova S. V. Vnutrennie volny [Internal waves]. St. Petersburg, SPbGMTU, 2001
- Kuznetsov N., Maz'ya V., Vainberg B. Linear water waves: A mathematical approach. Cambridge, Cambridge University Press, 2002
- Pagani C. D., Pierotti D. Exact solution of the wave-resistance problem for a submerged cylinder. II. The nonlinear problem. Arch. Rat. Mech. Anal. 149 (1999), 289-327
- Pagani C. D., Pierotti D. On solvability of the nonlinear wave-resistance problem for a surface-piercing symmetric cylinder. SIAM J. Math. Anal. 32 (2000), 214-233
- Pagani C. D., Pierotti D. The forward motion of an unsymmetric surface-piercing cylinder: the solvability of nonlinear problem in the supercritical case. Quart. J. Mech. Appl. Math. 54 (2001), 1-22
- Pagani C. D., Pierotti D. The subcritical motion of a semisubmerged body: solvability of the free-boundary problem SIAM J. Math. Anal. 36 (2004), 69-93
- Duchene V. Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon. Nonlinearity 24 (2011), 2281-2323
- Mercier M., Vasseur R., Dauxois T. Resurrecting dead-water phenomenon. Nonlinear Processes Geophys. 18 (2011), 193-208
- Yeung R. W., Nguyen T. C. Waves generated by a moving source in a two-layer ocean of finite depth. J. Eng. Math. 35 (1999), 85-107
- Miloh T., Tulin M., Zilman G. Dead-water effects of a ship moving in stratified seas. J. Offshore Mech. Arct. Eng. 115 (1993), 105-110
- Ekman V. W. On dead water. Scientific Results of the Norwegian North Polar Expedition 5, Christiania, 1904, 1-152
- Sretenskii L. N. O volnakh na poverkhnosti razdela dvukh zhidkostey s primeneniem k yavleniyu “mertvoi vody” [On the interface waves in a two-layer fluid: application to the “dead-water” phenomenon]. Zhurnal geofiziki 4 (1934), 332-370
- Sretenskii L. N. O volnovom soprotivlenii korablya pri nalichii vnutrennikh voln [On the wave resistance of a ship in the presence of internal waves]. Izvestia AN USSR, Mekh. mashinostroenie. No. 1 (1959), 56-63
- Uspenskii P. N. O volnovom soprotivlenii korablya pri nalichii vnutrennikh voln [On the wave resistance of a ship in the presence of internal waves]. Trudy Morsk. gidrofiz. Inst. 18 (1959), 68-85
- Gorodtsov V. A., Teodorovich E. V. K teorii volnovogo soprotivleniya (poverkhnostnye i vnutrennie volny) [On the theory of wave resistance (surface and internal waves)]. N. E. Kochin i razvitie mekhaniki [N. E. Kochin and the development of mechanics]. Moscow, Nauka, 1984
- Stepanyants Yu. A., Sturova I. V., Teodorovich E. V. Lineinaya teoriya generatsii poverkhnostnykh i vnutrennikh voln [Linear theory for the generation of surface and internal waves]. Itogi nauki i tekhniki. Mekhanika zhidkosti i gaza. [Summaries in science and technology. Fluid and gas mechanics]. 21 (1987), 93-179. Moscow, VINITI
- Motygin O., Kuznetsov N. The wave resistance of a two-dimensional body moving forward in a two-layer fluid. J. Eng. Math. 32 (1997), 53-72
- Motygin O. V. Razreshimost' granichnykh integral'nykh uravnenii dlya zadachi o dvizhenii tela v dvusloinoi zhidkosti [Solvability of boundary integral equations for the problem of a body moving in a two-layer fluid]. Zhurn. vychisl. matem. i matem. fiziki. 43 (2003), 279-286; Computational Mathematics and Mathematical Physics 43(2) (2003), 268-275
- Motygin O., Kuznetsov N. On the forward motion of an interface-crossing body in a two-layer fluid: the role of asymptotics in problem's statement. J. Eng. Math. 69 (2011), 113-134
- Nazarov S. A., Plamenevskii B. A. Ellipticheckie zadachi v oblastyakh s kusochno gladkoi granitsei [Elliptic boundary value problems in piecewise smooth domains]. Moscow, Nauka, 1991
- Nicaise S., Sandig A. M. General interface problems. 1, 2. Math. Meth. Appl. Sci. 17 (1994), 395-450
- Kuznetsov N. G., Maz'ya V. G. Ob odnoznachnoi razreshimosti ploskoi zadachi Neimana-Kel'vina [On unique solvability of the plane Neumann-Kelvin problem]. Mat. Sborn. 135 (1988) 440-462; Mathematics of the USSR-Sbornik (1989), 63(2) 425-446
- Anastassiou G. A., Dragomir S. S. On some estimates of the remainder in Taylor’s formula. J. Math. Anal. Appl. 263 (2001), 246-263
- Vainberg B. R., Maz'ya V. G. K ploskoi zadache o dvizhenii pogruzhennogo v zhidkost' tela [On the two-dimensional problem of an immersed body in the forward motion in a fluid]. Trudy Mosk. mat. obsch. 28 (1973), 35-56
- Ursell F. Mathematical note on the two-dimensional Kelvin-Neumann problem. Proc. 13th Symp. Naval Hydrodynamics (Tokyo, 1980). Shipbuild. Res. Assoc. Japan (1981), 245-251
- Suzuki K. Numerical studies of the Neumann-Kelvin problem for a two-dimensional semisubmerged body. Proc. 3d Int. Conf. Numerical Ship Hydrodynamics. Paris, Bassin d’Essais des Carenes, 1982, 83-95
- Motygin O., Kuznetsov N. The problem of steady flow over a two-dimensional bottom obstacle. Around the Research of Vladimir Maz'ya. II, Partial Differential Equations. N. Y., Springer, 2010, 253-274
- Motygin O. Uniqueness and solvability in the linearized two-dimensional problem of a body in a finite depth subcritical stream. Euro. J. Appl. Math. 10 (1999), 141-156
- Lahalle D. Calcul des efforts sur un profil portant d’hydroptè re par couplage é lé ments finis - repré sentation inté grale. Rapport de Recherche 187, Paris, ENSTA, 1984
- Wigley N. M. Mixed boundary value problems in plane domains with corners. Math. Z. 115 (1970), 33-52
- Maz'ya V. G. Granichnye integral'nye uravneniya [Boundary integral equations]. Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamental'nye napravleniya [Summaries in science and technology. Contemporary problems in mathematics. Fundamental trends]. 27 (1988), 132-228. Moscow, VINITI
- Carleman T. Ü ber das Neumann-Poincaresche Problem fü r ein Gebiet mit Ecken. Uppsala, Å lmqvist & Wiksell, 1916
- Werner P. A Green's function approach to the potential flow around obstacles in a two-dimensional channel. Methoden und Verfahren der math. Physik. 37 Frankfurt am Main, P. Lang, 1991
- Trofimov V. P. O kornevykh podprostranstvakh operatorov, analiticheski zavisyaschikh ot parametra [On the root subspaces of operators analytically depending on a parameter]. Matem. Issled. 3(9) (1968), 117-125
- Motygin O. V., McIver P. A uniqueness criterion for linear problems of wave-body interaction. IMA J. Appl. Math. 68 (2003), 229-250
- Kanatnikov A. N., Krischenko A. P. Lineinaya algebra [Linear algebra]. Moscow, MGTU, 2002
- Abramowitz M., Stegun I. Handbook of Mathematical Functions. N. Y., Dover, 1965
- Krein S. G., Trofimov V. P. O golomorfnykh operator-funktsiyakh neskol'kikh kompleksnykh peremennykh [On holomorphic operator-functions in multiple complex variables]. Func. anal. Appl. 3(4) (1969), 85-86; Functional Analysis and Its Applications, 3(4) (1969), 330-331
- Krein S. G., Trofimov V. P. O neterovykh operatorakh, golomorfno zavisyasch ot parametrov [On Noether operators depending on parameters holomorphically]. Trudy Mat. fakul'teta VGU. Trudy seminara po funkts. analizu. Sborn. statei po funkts. prostranstvam i oper. uravneniyam [Proc. Math. Faculty VSU. Proc. seminar in FA. Papers on func. spaces and oper. equations]. Voronezh, 1970, 63-85
- Chirka E. M. Kompleksnye analiticheskie mnozhestva [Complex analytic sets]. Moscow, Nauka, 1985