On the Property of Finite Speed of the Perturbation Propagation for the Solution of Dirichlet's Problem for Nonlinear Inhomogeneous Diffusion Equation
Author(s):
Alexander Fedorovich Tedeev
PhD in phisics and mathematics
Assoc.Professor
Dept. of functional analysis and differential equations
K. Khetagurov North-Osetian State University
Vatutin str. 44-46,
362025, Vladikaukaz, RSO-A, Russia
tedeev92@bk.ru
Abstract:
The paper deals with the Cauchy-Dirichlet problem for the
nonlinear inhomogeneous diffusion equation with the possible
power degeneration conditions near the boundary of a cone-like domain.
Our main technical tool for the obtaining of solution estimations
is a suitable weighted Nerenberg-Gagliardo type inequality,
which in turn is connected to a weighted isoperimetric
inequality characterizing the geometry of the domain.
On this basis we study the property of finite speed of the
perturbation propagation of the solution.
The suffucient conditions ensuring the possibility to estimate the radius
of a solution support in the absence of a source are given.
The existence of a strong generalized solution has been proved.
Keywords
- finite speed of perturbation propagation
- parabolic equation
- strong solution
- weak solution
References:
- 1 Antoncev S. N. O haraktere vozmushcenij, opisyvaemyh resheniyami mnogomernyh vyrozhdennyh parabolicheskih uravnenij . Dinamika sploshnoj sredy. 1979. vyp. 40. p. 114-122. 2 Antoncev S. N. O lokalizacii reshenij nelinejnyh vyrozhdayushcihsya ellipticheskih i parabolicheskih uravnenij. DAN SSSR. 1981. t. 260. №6. . p 1289-1293. 3 Baev A. D., Tedeev Al. F. Ocenka zadachi Koshi-Dirihle dlya differencialnogo uravneniya bystroj diffuzii v oblastyah tipa oktanta. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya fizika, matematika. 2010. №3. p. 67-70
- Vladimirov V. S. Uravneniya matematicheskoj fiziki. Moscow., 1971. 512 p
- Ealashnikov A. S. O ponyatii konechnoj skorosti rasprostraneniya vozmushcenij // Umn. 1979. t. 34. vyp. 2. p. 199-200
- Ladyzhenskaya O. A., Solonnikov V. A., Uralceva N. N. Linejnye i kvazilinejnye uravneniya parabolicheskogo tipa. Moscow, 1967. 736 p
- Lizorkin P. I., Otelbaev M. Teoremy vlozheniya i kompaktnosti dlya prostranstv sobolevskogo tipa s vesami. Matem. sb. 1980. t. 112 (154). № 1 (5). p. 56-85
- Lions Zh. L. Nekotorye metody resheniya nelinejnyh kraevyh zadach. Moscow., 1972. 580 p
- Tedeev Al. F. Finitnost nositelya resheniya zadachi v oblasti tipa oktanta. Vestnik VGU. Seriya fizika. matematika. 2014. №4. p. 1-14
- Eidus D., Katin S. The filtration equation in class of functions decreasing at infinity. Proceedings of the American Mathematical Society. 1994. vol. 120. № 3. p. 825-830
- Dorothee. D. Horoske. Sobolev spaces with muckenhoupt weights, singularities and inequalities. Georgian math. 2008. v. 15. № 2. p. 263-280
- Katin S., Kersner R. Disapperance of interfaces in finite time. Mechanica. 1983. v. 28. p. 117-120
- Adams R. Sobolev spaces. New York. Academic Press, 1975. p. 429
- Tedeev A. F. The interface flow-up phenomenon and local estimates for doubly degenerate parabolic equations. Applicable analysis. 2007. v. 86. № 6. p. 756-782
- Vazques I. l. The porous medium equation. Clarendon Press. 2007. p. 586