ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Homotopy Method in the Problem of Robust Mixed Criterion Control Synthesis in Hindrances Action

Author(s):

Alexander Anatolievich Rogoza

Bauman Moscow State Technical University (BMSTU),
Kaluga, Bazenova st, 2.

aemaeth_eternity@mail.ru

Abstract:

The work deals with the synthesis problem of the robust control for a mixed criterion in the conditions of action of hindrances minimizing anisotropic norm of a linear discrete system with structured uncertainty. The task may be considered as a part of a more general problem which does not contain any uncertainty, but has an additional input bounded on the capacity half-norm. Analytically the problem of the synthesis is reduced to the solving coupled system of nonlinear algebraic equations: Lyapunov equation, four Riccati equations and nonlinear equation of a special form. The homotopy method for the obtained system and the difference from the Davydenko classical method are discussed. The convergence of the method is justified. The analytical dependences for the implementation of the numerical procedures for the solution of nonlinear system of algebraic equations have been obtained. The mathematical modeling on the example of the aircraft in landing mode in conditions of wind shear has been performed.

Keywords

References:

  1. Diamond P., Vladimirov I. G., Kurdjukov A. P., Semyonov A. V. Anisotropy-based performance analysis of linear discrete time invariant control systems Int. J. Control. 2001. Vol. 74, No. 1. P. 28-42
  2. Doyle J., Zhou K., Glover K., Bodenheimer B. Mixed H 2 and H-infinity performance objectives II: Optimal control, IEEE Trans. Automat. Control. 1994. Vol. 39. P. 1575-1587
  3. Green M., Limebeer D. J. N. Linear robust control. N. J. : Prentice Hall. - 1995. -538 P
  4. Gu D. -W., Tsai M. C., O’Young S. D. and others State-space formulae for discrete-time !!!! ERROR!!! IMAGE IS NOT ALLOWERD! optimization, Int. J. of Contr. - 1989. - Vol. 49. -P. 1683-1723
  5. Kurdjukov A. P., Yurchenkov A. V., Kustov A. Yu. Robust Stability in Anisotropy-Based Theory with Non-Zero Mean of Input Sequence, Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014). Groningen, The Netherlands: University of Groningen, 2014. P. 208-214
  6. Semyonov A. V., Vladimirov I. G., and Kurdjukov A. P. Stochastic approach to H-infinity-optimization, Proceedings of the 33rd Conference on Decision and Control. Florida, USA. 1994. Vol. 3. P. 2249-2250
  7. Vladimirov I. G., Kurdjukov A. P., Semenov A. V. State-space solution to anisotropy-based stochastic H-infinity -optimization problem, Proc. 13 IFAC World Congr. USA, 1996. Paper IFAC-3d-01. 6. - H, P. 427-432
  8. Vladimirov I. G., Kurdjukov A. P., Semyonov A. V. Anizotropia signalov i entropia lineinix stacionarnih system [Anisotropy of signals and entropy of linear stationary systems], Dokladi Akademii Nauk, 1995, 342, p. 583-585. (In Russian)
  9. Vladimirov I. G., Daimond F, Kloeden P. Anizotropiinii analiz robastnogo kachestva lineinih nestacionarnih diskretnih system na konechom intervale vremeni [Anisotropic analysis of robust performance of linear time-varying discrete systems on a finite time interval], AiT, - 2006, №8, p. 92-111. (In Russian)
  10. Kicyl P. I., Lipcer R. S. Recurrentnoe ocenivanie sluchainih posledovatelnostei [Kalman random sequences], М. : Izd-vo Instituta probl. ypr., 1976. 68 p
  11. Kurdjukov A. P., Maksimov E. A. Reshenie zadachi stohasticheskoi optimizacii dla lineinoi diskretnoi sistemi c neopredelennostiu [The solution to the problem of stochastic optimization for linear discrete systems with uncertainty], Automatica I telemehanika. 2006. p. 22-46. (In Russian)
  12. Kustov A. Yu., Kurdjukov А. P., Nachinkina G. N. Stohasticheskay teoria anizotropoinogo robastnogo ypravlenia [The theory of anisotropic stochastic robust control], Nauchnoe izdanie. М. : IPU RAN, 2012. 128 p
  13. Vasilev F. P. Chislennie metodi reshenia ekstremalnix zadach [Numerical methods for solving extremal problems]. М. : Nauka, 1988. - 340 p
  14. Davidenko D. F. Ob odnom novom metode reshenia system nelineinih uravnenii [One new method for solving systems of nonlinear equations] Doklad AN SSSR. 1953. p. 601 - 602. (In Russian)

Full text (pdf)