ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Optimality Conditions for Central Fields of Trajectories

Author(s):

Yevgeny Nikolayevich Orel

Financial University under the Government of the Russian Federation
Leningrad ave., 49
Moscow, 125993 (SSE-3)
Russian Federation
Data Analysis, decision-making and financial technology department
Professor of the Department "Mathematics"

Oryol-EN@list.ru

Olga E. Orel

Financial University under the Government of the Russian Federation
Leningrad ave., 49
Moscow, 125993 (SSE-3)
Russian Federation
Data Analysis, decision-making and financial technology department
Associate Professor of "the department Mathematics"

Olga_Orel72@mail.ru

Abstract:

By following the calculus of variations procedure for analyzing optimal control problems on global extremum we study the possibility of imbedding extremal into a central field of trajectories. All elements of this field start from a given point and once cover the domain of the state space. In calculus of variations for the central field of extremals one examines the Weierstrass condition. If it is fulfilled then each extremal gives a global extremum. In general case the field may contain not only extremals. In this article we prove that a smooth central field of trajectories is optimal if and only if it consists from Pontryagin’s extremals. The example of economic application is considered, where the central field of optimals is constructed.

Keywords

References:

  1. Orjol E. N., Orjol O. E. [An absolute extremum in the Autonomous optimal control problems] Izvestija RAN. Teorija i sistemy upravlenija, 2013, № 3, 60-73. (In Russ. )
  2. Orjol E. N., Orjol O. E. [The Central field of optimal trajectories]. Doklady Akademii Nauk, 458:4 (2014), 402-405. (In Russ. )
  3. Jang L. [Lectures on the calculus of variations and optimal control theory] - M. : Mir (1974), 488. (In Russ. )
  4. Bellman R. Dinamicheskoe programmirovanie. [Dynamic programming] - M., Izd-vo inostr. lit. (1960), 400
  5. Pontrjagin L. S., Boltjanskij V. G., Gamkrelidze R. V., Mishhenko E. F. Matematicheskaja teorija optimal'nyh processov. [The mathematical theory of optimal processes] Moscow: Nauka (1969), 391
  6. Maklejn S. Gomologija. [Gomologija] Moscow: Mir (1966), 544
  7. Kamien N. I., Shwartz N. L. Dynamic optimization: the calculus of variations and optimal control in economics and management. [Dynamic optimization: the calculus of variations and optimal control in economics and management]. New York: Elsevier (1991), 377
  8. Orjol E. N., Orjol O. E. [Optimal control of the production process when the order to the deadline]. Optimal'noe upravlenie processom proizvodstva pri vypolnenii zakaza k zadannomu sroku. [Economics and mathematical methods]. Jekonomika i matematicheskie metody, 52:3 (2016), 65-77. (In Russ. )

Full text (pdf)