On the Characteristic Polynomial of an Equlibrium State of an Autonomous System Having an Attracting Invariant Manifold
Author(s):
Alexander V. Bratishchev
Don State Technical University,
Professor of Applied Mathematics Department
avbratishchev@spark-mail.ru
Abstract:
Let an autonomous system have an invariant global attracting
in the sense of A. A. Kolesnikov manifold. Then all equilibrium
states of the system belong to the set. For each state the explicit form
of the eigenvalues of the linearization matrix (in the amount equal
to the manifold codimensioin) was found. This allows us to reduce
the power of characteristic polynomial and facilitates the study
of the topological character of equilibrium. In the particular case
of the invariant plane we prove that the above mentioned attracting
as a whole is equivalent to global stability
Keywords
- attracting invariant set
- autonomous system
- characteristic polynomial
- eigenvalue
- the state of equilibrium
References:
- Leonid P. Shilnikov, Andrey L. Shilnikov, Dmitriy V. Turuev, Leon O. Chua Method of qualitative theory in nonlinear dynamics. Part two. (World Scientific: Singapore - New Jersy - Hong Kong), 1998
- Bratishchev A. V. [Kriterii ustochivosti polozheniy ravnovesiya sinergeticheskogo regulyatora. Obshchiy sluchay. Tezisi russko-armyanskoy konferencii po matematicheskomu analizu, matematicheskoy fizike i analiticheskoy mechanike [Materials of the conference «VI Russian-Armenian Conference on Mathematical Analysis, Mathematical Physics and Analytical Mechanics»], Rostov-on-don, 11-16. 09. 2016, 2-3 p. ISBN: 978-5-7890-1160-7(In Russian). Rezhim dostupa: http://rus-arm.sfedu.ru/
- Bratishchev A. V. [Three mathematical problems in the synergetic control theory]. Differencialnie uravneniya i processi upravleniya. №2, 2016, 16-30
- Spivak M. Calculus on manifolds. New-York, Amsterdam, W. A. Benjamin, Inc. 1965
- Kolesnikov A. A. Posledovatelnaia optimizatcia nelineinikh agregirovannikh sistem upravleniia [Successive optimization of the aggregated nonlinear control systems]. Moscow, Energoatomizdat Publ., 1987. 160 p
- Kurosh A. G. Kurs visshey algebri [Course of linear algebra]. Moscow, Nauka Publ., 1975, 432 p
- Zubov V. I. Ustoychivoct’ dvizheniya [Stability of the motion]. Moscow, Visshaya shkola Publ., 1973, 272 p
- Efimov N. V., Rozendorn E. R. Lineynaya algebra i mnogomernaua geometriya [Linear Algebra and many-dimensional geometry] . Moscow, Nauka Publ., 1970, 528 p
- Pliss V. A. [Reduction principle in stability theory]. Izvestiya AN SSSR. Seriya matem., 1964, tom 28, vipusk 6, 1297-1324 p