ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

On the Characteristic Polynomial of an Equlibrium State of an Autonomous System Having an Attracting Invariant Manifold

Author(s):

Alexander V. Bratishchev

Don State Technical University,
Professor of Applied Mathematics Department

avbratishchev@spark-mail.ru

Abstract:

Let an autonomous system have an invariant global attracting in the sense of A. A. Kolesnikov manifold. Then all equilibrium states of the system belong to the set. For each state the explicit form of the eigenvalues of the linearization matrix (in the amount equal to the manifold codimensioin) was found. This allows us to reduce the power of characteristic polynomial and facilitates the study of the topological character of equilibrium. In the particular case of the invariant plane we prove that the above mentioned attracting as a whole is equivalent to global stability

Keywords

References:

  1. Leonid P. Shilnikov, Andrey L. Shilnikov, Dmitriy V. Turuev, Leon O. Chua Method of qualitative theory in nonlinear dynamics. Part two. (World Scientific: Singapore - New Jersy - Hong Kong), 1998
  2. Bratishchev A. V. [Kriterii ustochivosti polozheniy ravnovesiya sinergeticheskogo regulyatora. Obshchiy sluchay. Tezisi russko-armyanskoy konferencii po matematicheskomu analizu, matematicheskoy fizike i analiticheskoy mechanike [Materials of the conference «VI Russian-Armenian Conference on Mathematical Analysis, Mathematical Physics and Analytical Mechanics»], Rostov-on-don, 11-16. 09. 2016, 2-3 p. ISBN: 978-5-7890-1160-7(In Russian). Rezhim dostupa: http://rus-arm.sfedu.ru/
  3. Bratishchev A. V. [Three mathematical problems in the synergetic control theory]. Differencialnie uravneniya i processi upravleniya. №2, 2016, 16-30
  4. Spivak M. Calculus on manifolds. New-York, Amsterdam, W. A. Benjamin, Inc. 1965
  5. Kolesnikov A. A. Posledovatelnaia optimizatcia nelineinikh agregirovannikh sistem upravleniia [Successive optimization of the aggregated nonlinear control systems]. Moscow, Energoatomizdat Publ., 1987. 160 p
  6. Kurosh A. G. Kurs visshey algebri [Course of linear algebra]. Moscow, Nauka Publ., 1975, 432 p
  7. Zubov V. I. Ustoychivoct’ dvizheniya [Stability of the motion]. Moscow, Visshaya shkola Publ., 1973, 272 p
  8. Efimov N. V., Rozendorn E. R. Lineynaya algebra i mnogomernaua geometriya [Linear Algebra and many-dimensional geometry] . Moscow, Nauka Publ., 1970, 528 p
  9. Pliss V. A. [Reduction principle in stability theory]. Izvestiya AN SSSR. Seriya matem., 1964, tom 28, vipusk 6, 1297-1324 p

Full text (pdf)