Neimark-saker Bifurcation and the Dynamics of Laser with Saturable Absorber
Author(s):
Dmitriy Yurievich Volkov
Dept. of High Geometry
Faculty of Mathematics and Mechanics
Saint-Petersburg State University
dmitrivolkov@mail.ru
Ksenia Valerievna Galunova
Dept. of High Mathematics
Peter the Great St.Petersburg Polytechnic University
Abstract:
In this paper we investigate the dynamics associated with multiple
bifurcation that arises in laser with saturable absorber (LSA). We study bifurcation
of periodic solutions and invariant tori from an equilibrium point of LSA equations
for which the linearisation has a pair of pure imaginary eigenvalues and a double
zero eigenvalue of index two. The approach is based on the central manifold reduction
and the method of normal forms.
Keywords
- invariant tori
- Neimark-Saker bifurcation
- periodic solution
References:
- Abraham N. B., Mandel P. and Narducci L. M. : Dynamical instabilities and pulsations in lasers, in Progress in Optics, edited by E. Wolf Elsevier, Amsterdam, Vol. 25, pp. l- 190, 1988
- Andronov A, A,, Leontovich E. A., Gordon I. I., and Maier A. G. : Theory of Bifurcations of Dynamic Systems on a Plane. Israel Program of Scientific Translations, Jerusalem
- Arnold V. I. : Geometrical Methods in the Theory of Ordinary Differential Equations. Springer - Verlag, Berlin, 1983
- Bautin N, N, -. Behavior of Dynamical Systems near the Boundaries of Stability Regions (In Russian), Gostexizdat, Leningrad, 1949
- Bibikov Yu. N. : Multi-frequency non-linear oscillations and their bifurcations (in Russian). Leningrad Gos, Univ., Leningrad, 1991
- Broer H, W,, Huitema G. B, and Sevrvuk M. B. : Quasi-periodic tori in a families of
dynamical systems:order admits chaos., LNM 1645, Springer Verlag, 1996
- Chow S. N., Li C., Wang D. : Normal forms and bifurcation of planar vector fields. Cambridge University Press, 1994
- Dangelmavr G,, Armbruster D,, Neveling M. :. A codimension three bifurcation for the laser with saturable absorber. Zeitschrift fur Phvsik B Condensed Matter, 1985 3. 365-370
- Erneux T., Glorieux P. :Laser dynamics. - Cambridge University Press, 2010
- Erneux T., Mandel P., Magnan J. F, : Quasiperiodicity in lasers with saturable absorbers Physical Review A. - 1984. - T. 29. - Λ *. 5. - C. 2690
- Hassard B, D,, Kazarinoff N. D. and Wan Y. -H. : Theory and Applications of Hopf bifurcation. Cambridge University Press, London, 1981
- Chow S, N,, Hale J, K, : Methods of bifurcation theory. - Springer Science Business Media, 2012. - T. 251
- Khanin IA. I. : Fundamentals of laser dynamics. - Cambridge Int Science Publishing
- Kuznetsov Yu. A. : Elements of applied Bifurcation Theory., Applied Mathematical Sciences, volume 112, Springer-Verlag, Berlin, 1995
- Leonov G. A., Kuznetsova O. K. :Lyapunov quantities and limit cycles of two- dimensional dynamical systems, analytical methods, symbolic computation, Regular and Chaotic Dynamics 15(2-3), 2010, pp. 354-377
- Lyapunov, A. M, : The general problem of the stability of motion, London: Taylor Francis, 1992
- Lugiato L. A., Mandel P., Dembinski S. T., Kossakovski A, : Semiclassical and quantum theories of bistability in lasers containing saturable absorbers. Phys. Rev. A, 18(1978), p. 234-278
- Lugiato L., Prati F., Brambilla M., : Nonlinear optical systems. - Cambridge University Press, 2015
- Mandel P. : Theoretical problems in cavity nonlinear optics. - Cambridge University Press, 2005
- Marsden J. E,, McCracken M, : The Hopf bifurcation and its applications. - Springer , 2012. - T. 19
- Neimark Yu. I. : On some cases of periodic motions depending on parameters (In Russian. ), Dokl. Akad. Nauk SSSR 129, 736-739. 1959
- Peplowski P., Haken H, :Bifurcation with two parameters in two-dimensional complex space. Applications to laser systems Physica D: Nonlinear Phenomena. - 1988. - T - Λ *. 1-2. - C. 135-150
- Romanovski V., Shafer D, : The center and cyclicity problems: a computational algebra approach. - Springer Science Business Media, 2009
- Sacker R. J: A new approach to perturbation theory of invariant surfaces. Comm. Pure Appl. Math., 18 (1965) 717-732
- Sacker R. J. : On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations. - NEW YORK ( MY NY COURANT INST OF MATHEMATICAL SCIENCES, 1964. - Λ *. IMM-NYU 333
- Scheurle J., Marsden J. : Bifurcation to quasi-periodic tori in the interaction of steady state and Hopf bifurcations SIAM journal on mathematical analysis. - 1984. - T. 15. - Λ *. 6. - C. 1055-1074
- Vladimirov A. G., Volkov D. Yu. : Low-intensity chaotic operations of a laser with saturable absorber. Optics Communication, 100(1993), p. 351-360
- Volkov D. Yu. -. Invariant tori bifurcation from an equilibrium state in the presence of zero eigenvalues. (English) Vestn, Leningr. Univ., Math. 21, No. 2, 78-79 (1988); translation from Vestn. Leningr. Univ., Ser. I 1988, No. 2, 102-103 (1988)