Stochastic Differential Equations: Theory and Practice of Numerical Solution. With Programs on MATLAB
Author(s):
Dmitriy Feliksovich Kuznetsov
Peter the Great Saint-Petersburg Polytechnic University
Russia, 195251, Saint-Petersburg, Polytechnicheskaya st., 29
Department of Higher Mathematics
Professor, Doctor of Physico-Mathematical Sciences
sde_kuznetsov@inbox.ru
Abstract:
This monograph is devoted to the problem of numerical integration
of stochastic differential equations (SDE). The case of Ito
SDE is systematically analized and the case of SDE with jump component
is also considered. It is well known, that SDE are adequate mathematical
models of dynamic systems under the influence of random
disturbances. One of the effective
approaches to numerical integration of Ito SDE is an
approach based on Taylor-Ito and Taylor-Stratonovich expansions. In the
presented book this approach is systematically analized.
The book consist of 4 parts and 17 chapters.
Let's deal with the content of this monograph according to chapters.
In chapter 1 we gathered a support material which may be used
while reading this book. We provided concepts of Markov processes,
Ito and Stratonovich stochastic integrals, Ito formula, Ito SDE and
SDE with jump component, stochastic integrals according to
Poisson random measures and martingales.
In chapter 2 we consider the mathematical models
of dynamic systems of different physical nature under the influence of random
disturbances on the base of SDE. Some mathematical problems for SDE also
described in this chapter. We considered the problem of filtering
(linear and non-linear), the problem of stochastic stability, the problem
of stochastic control, the problem of estimation of parameters of
stochastic systems and the probubilistic representations of solutions
of Cauchy and Dirichlet problems for differential equations with
partial derivatives or second order.
Chapter 3 is devoted to some properties and formulas for stochastic
integrals. We determined the class of multiple Ito
stochastic integrals, for which with probability 1 the
formulas of integration order replacement corresponding to
the rules of classical integral calculus are reasonable.
We proved the theorem of integration order replacement for
the class of multiple Ito stochastic integrals.
We analyzed many examples of this theorem usage.
These results are generalized for the case of multiple stochastic integrals
according to martingale. The formula of connection between multiple Ito
and Stratonovich stochastic integrals of any fixed multiplicity k is proven.
We brought out two families of analytical formulas
for calculation of stochastic integrals on Ito processes
of sufficiently general form.
In chapter 4 we discuss the stochastic Taylor expansions.
We consider the classical Taylor-Ito and Taylor-Stratonovich
expansions and 4 new (so called) unified Taylor-Ito and Taylor-Stratonovich
expansions. The most important feature of mentioned expansions is presence
in them of multiple Ito or Stratonovich stochastic integrals, which
play the key role for solving the problem of numerical integration of
Ito SDE and SDE with jump component. The unified Taylor-Ito and
Taylor-Stratonovich expansions are built on the base of theorem about
integration order replacement in multiple Ito stochastic integrals (chapter 3).
The unified Taylor-Ito and Taylor-Stratonovich expansions contains
the minimal collections of multiple Ito and Stratonovich stochastic
integrals, which can't be connected by linear relations. We called
such collections as stochastic basises.
Chapters 5 and 6 are devoted to strong (mean-square) approximations
of collections of multiple Ito and Stratonovich stochastic
integrals from the Taylor-Ito and Taylor-Stratonovich expansions.
In chapters 5 we successfully use the tool
of multiple and iterative Fourier series, built in the space L2
and pointwise, for the strong approximation of multiple Ito and
Stratonovich stochastic integrals.
We obtained a general result connected with expansion of multiple
Ito stochastic integrals of any fixed multiplicity k, based on
generalized multiple Fourier series converging in the space
L2([t, T] x ... x [t, T]) (k-times). This result is adapted
for multiple Stratonovich stochastic integrals of 1-4 multiplicity
for Legendre polynomial system and system of trigonometric functions,
as well as for other types of multiple stochastic integrals. The theorem
on expansion of multiple Stratonovich stochastic integrals with any
fixed multiplicity k, based on generalized iterative Fourier series
converging pointwise is proven.
In chapter 6 we obtained the expressions for mean-square
errors of approximation of multiple Ito stochastic integrals in exact form
for the case of
multiplicity 1-5 and in general form for the case of any fixed multiplicity k.
The evaluation for mean-square
errors of approximation of multiple Ito stochastic integrals
of any fixed multiplicity k
is also obtained.
We provided a significant practical material devoted to
approximation of specific multiple Ito and Stratonovich stochastic
integrals of 1-5 multiplicity from the Taylor-Ito and
Taylor-Stratonovich expansions using the system of Legendre polynomials
and the system of trigonometric functions.
We compared the methods formulated in this book with existing methods.
The last part of the chapter 6 is devoted to the weak approximations of
multiple Ito stochastic integrals from the Taylor-Ito expansion.
In chapters 7-9 we construct strong numerical methods for Ito SDE.
Chapter 7 is devoted to explicit one-step strong numerical
methods of orders of accuracy 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0.
The finite-difference modifications of Runge-Kutta type for
some of mentioned methods are considered.
The new step in this scientific field is connected with
the use of methods of approximation of multiple
Ito and Stratonovich stochastic integrals from the chapters 5 and 6
and with the use of unified Taylor-Ito and Taylor-Stratonovich
expansions from cheapter 4.
In chapter 8 we construct implicit one-step strong numerical methods
for Ito SDE and in chapter 9 we construct explicit and implicit two-step
and three-step strong numerical methods for Ito SDE
of orders of accuracy 1.0, 1.5, 2.0 and 2.5. The Runge-Kutta type methods
are also presented.
In chapter 10 we consider weak numerical methods for Ito SDE.
The most of them are well know, but we also constract several new
numerical methods. In this chapter explicit, implicit, extrapolation and
"predictor-corrector" methods as well as Runge-Kutta type methods
are presented.
Chapter 11 is devoted to numerical integration of linear stationary
systems of Ito SDE. The numerical method, based on integral
representation of solution of linear stationary system of Ito SDE
and spectral expansion of diffusion matrix is considered.
The order of accuracy of this method is investigated.
At the second part of this chapter we consider another numerical
methods for linear stationary systems of Ito SDE: method, based on
approxmation of Wiener process by piecewise constant stochastic
process and method, based on Taylor-Ito expansion and Legendre plynomials.
In chapter 12 we consider the theory of numerical integration
of SDE with jump component. We discuss the well known concept,
which consider SDE with jump component as Ito SDE
on the time intervals between the jumps of Poisson process.
This approach allows to model separately of jump and diffusion components of
the solution of SDE with jump component. For numerical
modeling of diffusion component we can use the methods from the chapters
5-10.
In chapter 13 we provide the library of MATLAB programs for
numerical integration of linear stationary systems of Ito SDE,
based on atgorithms from chapter 11. Numerical examples of use of
this library is considered.
In chapters 14-16 we demonstrate by numerical modeling the application of
numerical methods, constructed in this monograph, to modeling of sample paths
of solutions of systems of non-linear Ito SDE (chapter 14) and to numerical
solution of mathematical problems by strong (chapter 15) and by weak
(chapter 16) numerical methods. For the first time the numerical modeling
of multiple Ito and Stratonovich stochastic integrals is realized with use of
system of Legendre polynomials.
Chapter 17 contains full texts of MATLAB programs, realizing the
numerical experiments along the text of the book in whole.
Keywords
- explicit numerical method
- finite-difference numerical method
- implicit numerical method
- Ito stochastic differential equation
- Ito stochastic integral
- Legendre polynomial
- MATLAB program
- mean-square convergence
- multiple Fourier series
- multiple Fourier-Legemdre series
- multiple Ito stochastic integral
- multiple stochastic integral expansion
- multiple Stratonovich stochastic integral
- multiple trigonometric Fourier series
- numerical integration
- numerical method
- numerical method of Runge-Kutta type
- numerical modeling
- one-step numerical method
- Parseval equality
- stochastic differential equation
- stochastic differential equation with jump component
- stochastic integral on martingale
- stochastic integral on Poisson measure
- stochastic Taylor expansion
- Stratonovich stochastic integral
- strong approximation
- strong convergence
- strong numerical method
- Taylor-Ito expansion
- Taylor-Stratonovich expansion
- three-step numerical method
- two-step numerical method
- unified Taylor-Ito expansion
- unified Taylor-Stratonovich expansion
- weak approximation
- weak convergence
- weak numerical method
References:
- Boyce W. E. Approximate solution of random ordinary differential equations. Adv. in Appl. Probab. 10 (1978), 172-184
- Kushner H. J. Probubility methods for approximations in stochastic control and for elliptic equations. N. Y., San Francisco, London, Academic Press, 1977. 242 p
- Il’in V. A., Poznyak E. G. Osnovy matematicheskogo analiza. Chast’ 2 [Foundations of mathematical analysis. Part II]. Moscow, Nauka Publ., 1973. 448 p
- Gihman I. I., Scorokhod A. V. Vvedenie v teoriu sluchainyh processov [Introduction to the theory of stochastic processes]. Moscow, Nauka Publ., 1977. 660 p
- Gihman I. I., Scorokhod A. V. Stokhasticheskie differencial’nye uravnenia [Stochastic differential equations]. Kiev, Naukova Dumka Publ., 1968. 354 p
- Gihman I. I., Scorokhod A. V. Teoria sluchainyh processov. T. 3 [The theory of stochastic processes. V. 3]. Moscow, Nauka Publ., 1975. 469 p
- Gihman I. I., Scorokhod A. V. Stokhasticheskie differencial’nye uravnenia i ih prilozhenia [Stochastic differential equations and its applications]. Kiev, Naukova Dumka Publ., 1982. 612 p
- Scorokhod A. V. Sluchainye processy s nezavisimymi proraschenyami [Stochastic processes with independent increments]. Moscow, Nauka Publ., 1964. 280 p
- Dynkin E. B. Markovskie processy [Markov processes] Moscow, Nauka Publ., 1963. 860 p
- Koroluk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F. Spravochnik po teorii veroyatnostei i matematicheskoi statistike [Handbook on the probability theory and mathematical statistics]. Moscow, Nauka Publ., 1985. 640 p
- Shirjaev A. N. Veroyatnost’ [Probability]. Moscow , Nauka Publ., 1989. 640 p
- Shirjaev A. N. Osnovy stokhasticheskoi finansovoi matematiki. T. 2 [Foundations of the stochastic financial mathematics. V. 2]. Moscow, Fazis Publ., 1998. 544 p
- Liptser R. Sh., Shirjaev A. N. Statistika sluchainyh processov: nelineinaya fil’tracia i smezhnye voprosy [Statistics of stochastic processes: nonlinear filtering and related problems]. Moscow, Nauka Publ., 1974. 696 p
- Rozanov Yu. A. Stacionarnye sluchainye processy [Stationary stochastic processes]. Moscow, Fiznatgiz Publ., 1963. 284 p
- Stratonovich R. L. Uslovnye markpvskie processy i ih primenenie k teorii optimal’nogo upravlenia [Conditional Markov’s processes and its application to the theory of optimal control]. Moscow, Moscow St. Univ. Publ, 1966. 320 p
- Stratonovich R. L., Polyakova M. S. Elementy molekulyarnoi fiziki, termodinamiki i statisticheskoi fiziki [Elements of molecular physics, thermodynamics and statistical physics]. Moscow, Moscow St. Univ. Publ, 1981. 176 p
- Stratonovich R. L. Izbrannye voprosy teorii fluctuacii v radiotekhnike [Selected questions of the theory of fluctuacions in radio engineering]. Moscow, Soviet Radio Publ., 1961. 556 p
- Hardy G. H., Rogosinski W. W. Fourier series. N. Y., Dover Publ., 1999. 112 p
- Hobson E. W. The theory of spherical and ellipsoidal harmonics. Cambridge, Cambridge Univ. Press, 1931. 502 p
- Tolstov G. P. Rjady Fur’e [Fourier series]. Moscow-Leningrad, State Publ. House of Techn. and. Theor. Lit, 1951. 396 p
- Chung K. L., Williams R. J. Introduction to Stochastic Integration. Progress in Probability and Stochastics. Vol. 4, Ed. Huber P., Rosenblatt M. Boston, Basel, Stuttgart, Birkhauser Publ., 1983. 152 p
- Ryzhik I. M., Gradstein I. S. Tablicy integralov, sum, ryadov i proizvedenii. Izd. 3-e [Tables of integrals, sums, series, and products. 3-rd Ed. ]. Moscow-Leningrad, State Publ. House of Techn. and. Theor. Lit, 1951. 464 p
- Kamke E. Spravochnik po obyknovennym differencial’nym uravneniam. T. 1 [Handbook on ordinary differential equations. Vol. 1]. Moscow, Nauka Publ., 1971. 576 p
- Ermakov S. M., Mikhailov G. A. Kurs statisticheskogo modelirovania [The course of statistical modeling]. Moscow, Nauka Publ., 1976. 320 p
- Friedman A. Partial differential equations of parabolic type. Englewood Cliffs, Prentice-Hall Publ., 1964. 347 p
- Smoluhovski M. V. Drei Vortrage uber Diffusion Brownsche Bewegung und Koagulation von Kolloidteilchen. Phys. Zeit. 17 (1916), 557-585
- Ladyzhenskaya O. A., Solonnikov V. A., Ural’ceva N. N. Lineinye i kvazilineinye uravnenia parabolicheskogo tipa [Linear and quasilinear equations of parabolic type]. Moscow, Nauka Publ., 1967. 736 p
- Tikhonov A. N., Samarskii A. A. Uravnenia matematicheskoi fiziki. Izd. 5-e [Equations of mathematical physics. 5-th Ed]. Moscow, Nauka Publ., 1977. 735 p
- Arsenin V. Ya. Metody matematicheskoi fiziki i special’nye funkcii [Methods of mathematical physics and special functions]. Moscow, Nauka Publ., 1974. 431 p
- Gantmacher F. R. The theory of matrices. New York, Chelsea Publ., 1959. Vol. 1: 374 p., Vol. 2: 277 p
- Bjork T., Kabanov Yu., Runggaldier W. Bond market structure in the presence of marked point processes. Math. Finance. 7: 2 (1997), 211-239
- Hull J., White A. The pricing of options as assets with stochastic volatilities. J. Finance. 42 (1987), 281-300
- Merton R. C. Option pricing when underlying stock returns and discontinuous. J. Financial Economics. 3 (1976), 125-144
- Merton R. C. Continuous-time finance. Oxford; N. Y., Blackwell Publ., 1990. 453 p
- Hull J. Options, futures and other derivatives securities. N. Y., J. Willey and Sons Publ., 1993. 368 p
- Bachelier L. Theorie de la speculation. Ann. Sci. Ecol. Norm. Sup. Ser. 3. 17 (1900), 21-86
- Einstein A. Investigations on the theory of the Brownien movement. N. Y., Dover, 1956. 122 p
- Pontrjagin L. S. Obyknovennye differencial’nye uravnenia. Izd. 5-e. [Ordinary differential equations. 5-th Ed. ]. Moscow, Nauka Publ., 1982. 331 p
- Bahvalov N. S. Chislennye metody [Numerical methods]. Moscow, Fizmatgiz Publ., 1973. 631 p
- Pontrjagin L. S., Andronov A. A., Witt A. A. Statistische Auffassung dynamischer Systeme. Phys. Zeit. 6: (1934), 1-24
- Van der Ziel A. Fluctuation phenomena in semi-conductors. London, Butterworths Scientific Publ., 1959, 168 p
- Nyquist H. Thermal agittation of electric charge in conductors. Phys. Rev. 32 (1928), 110-113
- Arato M. Linear Stochastic Systems with Constant Coefficients. A Statistical Approach. Berlin, Heidelberg, N. Y., Springer-Verlag Publ., 1982. 289 p
- Arato M., Kolmogorov A. N., Sinay Ja. G. About estimates of parameters of complex stationary Gaussian Markov process. Dokl. Akad. Nauk SSSR. 146: 4 (1962), 747-750. (In Russ. )
- Orlov A. Sluzhba Shiroty [Service of Latitude], Moscow, Akad. Nauk SSSR Publ., 1958. 126 p
- Neymark Yu. I., Landa P. S. Stokhasticheskie i haoticheskie kolebaniya [Stochastic and chaotic oscillations], Moscow, Nauka Publ., 1987. 424 p
- Lotka A. J. Undamped oscillations derived from the law of mass action. J. Amer. Chem. Soc. 42: 8 (1920), 1595-1599
- Volterra V. Matematicheskaya teoriya bor’by za suschestvovanie [Mathematical theory of struggle for existence], Moscow, Nauka Publ., 1976. 286 p
- Belousov B. P. [Periodically acting reaction and its mechanism] Sb. referatov po radiacionnoi medicine [A collection of abstracts on radiation medicine], Moscow, Medgiz Publ., 1959, pp. 145-148 (In Russ. )
- Zhabotinsky A. M. Koncentracionnye avtokolebaniya [Concentration self-oscillations], Moscow, Nauka Publ., 1974. 178 p
- Romanovsky Yu. M., Stepanova N. V., Chernavsky D. S. Matematicheskaya biofizika [Mathematical biophysics], Moscow, Nauka Publ., 1984. 304 p
- Obukhov A. M. Description of turbulence in Lagrangian variables. Adv. Geophis. 3 (1959), 113-115
- Pervozvansky A. A. Rynok: raschet i risk [Market: calculation and risk], Moscow, INFRA Publ., 1994. 210 p
- Wolf J. R. Neue Untersuchungen uber die Periode der Sonnenflecken und ihre Bedeutung. Mit. Naturforsch. Ges. Bern. 255, (1852), 249-270
- Slucky E. E. About 11-year periodicity of sunspots, Dokl. Akad. Nauk SSSR, 4: 9, 1-2 (1935), 35-38. (In Russ. )
- Henrici P. Discrete variable methods in ordinary differential equations. N. Y., Wiley Publ., 1962. 407 p
- Rossler O. E. An equation for continuous chaos. Phys. Lett. 57A (1976), 397-398
- Has’minsky R. Z. Ustoichivost’ system differencial’nyh uravnenii pri sluchainyh vozmuscheniyah ih parametrov [Stability of systems of differential equations under random disturbances of their parameters], Moscow, Nauka Publ., 1969. 365 p
- Kushner H. J. Stochastic stability and control. N. Y., London, Academic Press, 1967. 162 p
- Barkin A. I., Zelentsovsky A. L., Pakshin P. V. Absol’utnaya ustoichivost’ determinirovannyh i stokhasticheskih system upravleniya [Absolute stability of deterministic and stochastic control systems]. Moscow, MAI Publ., 1992. 303 p
- Kozin F. Introduction to stability of stochastic systems. Avtomatika. 5 (1969), 95-112. (In Russ. )
- Samarsky A. A., Galaktionov V. A., Kurd’umov S. P. Rezhimy s obostreniem v zadachah dl’a kvazilineinyh parabolicheskih uravnenii. [Regimes with aggravation in the problems for quasilinear parabolic equations], Moscow, Nauka Publ,, 1987. 476 p
- Samarsky A. A. Teoriya raznostnyh skhem. Izd. 3-e. [Theory of difference schemes. 3rd Ed. ], Moscow, Nauka Publ., 1989. 614 p
- Kac M. On distribution of certain Wiener functionals. Trans. Amer. Math. Soc. 65 (1949), 1-13
- Kac M. On some connections between probability theory and differential and integral equations. Proc. Second Berkley Symp. Math. Stat. Probab. 1 (1951), 189-215
- Philips H. B., Wiener N. Nets and Dirichlet problem. J. Math. Phys. 2 (1923), 105-124
- Petrovski I. G. Uber das Irrfahrtproblem. Math. Ann. 109 (1934), 425-444
- Doob J. L. Semimartingales and subharmonic functions. Trans. Amer. Math. Soc. 77 (1954), 86-121
- Ueno T. The diffusion satisfying Wentzell's boundary conditions and the Markov processes on the boundary. Proc. Japan Akad. 36 (1960), 533-538
- Blumenthal R. M., Getoor R. K., McKean H. P. Markov processes with identical hitting distributions. Illinois J. Math. 6 (1962), 402-421
- Strook D. W., Varadhan S. R. S. Multidimensional diffusion processes. Berlin, Springer Publ., 1979. 338 p
- Ito K. Veroyatnostnye processy. Vyp. 2 [Probubilistic processes. Vol. 2], Moscow, IL Publ., 1963. 135 p
- Arnold L. Stochastic differential equations: Theory and applications. N. Y., Wiley Publ., 1974. 228 p
- Ikeda N., Watanabe S,. Stochastic differential equations and diffusion processes. Amsterdam, Oxford, N. Y., North Holland Publ. Co., 1981. 480 p
- Pugachev V. S., Sinitsin I. N. Stokhasticheskie differencial’nye sistemy: analiz i fil’traciya. [Stochastic differential systems: analysis and filtration], Moscow, Nauka Publ., 1985. 559 p
- Girsanov I, V. About the conversion of one class of stochastic processes with absolutely continuous substitution of measure. Teor. Veroyatn. i prim. . 5: 3 (1960), 314-330. (In Russ. )
- Maruyama G. Continuous Markov processes and stochastic equations. Rend. Circ. Math. Palermo. 4 (1955), 48-90
- Dzagnidze Z. A., Chitashvili R. Ya. [Approximate integration of stochastic differential equations]. Sb. Nauchn. Trudov Inst. Prikl. Mat. Tbil. Gos. Univ. ”Trudy IV” [Proc. of the Inst. of Appl. Math. of the Tbil. St. Univ. ], 1975, pp. 267-279. (In Russ. )
- Atalla M. A. [Finite-difference approximations for stochastic differential equations]. Sb. Nauchn. Trudov Inst. Mat. Ak. Nauk. Ukr. SSR “Veroyatnostnye metody issledovaniya system s beskonechnym chislom stepenei svobody” [Proc. of the Inst. of Math. of the Akad. of Sc. of Ukr. SSR “Probabilistic methods for the study of systems with an infinite number of degrees of freedom”], Kiev, 1986, pp. 11-16. (In Russ. )
- Nikitin N. N., Razevig V. D. Methods of digital modeling of stochastic differential equations and estimate of their errors. Zh. Vychisl. Mat. i Mat. Phiz. 18: 1 (1978), 106-117. (In Russ. )
- Razevig V. D. Digital modeling of multidimensional dynamic systems under stochastic disturbances. Avtomat. i Telemekh. . 4 (1980), 177-186. (In Russ. )
- Maghsoodi Y., Harris C. J. In-probubility approximation and simulation of nonlinear jump-diffusion SDE. IMA J. Math. Control Inform. 4 (1987), 65-92
- Maghsoodi Y. Mean-square efficient numerical solution of jump-diffusion SDE. 1994. Preprint OR72. Univ. of Southampton. 26 p
- Talay D. Convergence pour chaque trajectoire d'un scheme d'approximation des EDS. ComputesRendus Acad. Sci. Paris. Ser. I. Math. 295 (1982), 249-252
- Talay D., Tubaro L. Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8: 4 (1990), 483-509
- Talay D. Efficient numerical schemes for the approximation of expectations of functionals of the solution of an SDE and applications. Springer Lecture Notesin Control and Inform. Sci. 61 (1984), 294-313
- Milstein G. N. Approximate integration of stochastic differential equations. Teor. Veroyatn. i Primen. 19 (1974), 557-562. (In Russ. )
- Milstein G. N. A Method of second-order accuracy of integration of stochastic differential equations. Teor. Veroyatn. i Primen 23 (1978), 396-401. (In Russ. )
- Milstein G. N. Weak approximation of solutions of systems of stochastic differential equations. Teor. Veroyatn. i Primen. 30 (1985), 750-766. (In Russ. )
- Milstein G. N. Chislennoye integrirovaniye stokhasticheskih differencial’nyh uravnenii [Numerical integration of stochastic differential equations], Sverdlovsk, Ural. Univ. Publ., 1988. 225 с
- Milstein G. N. The Solution of the first boundary problem for equations of parabolic type by integrating of stochastic differential equations. Teor. Veroyatn. i Primen. 40 (1995), 657-665. (In Russ. )
- Auslender E. I., Milstein G. N. Asymptotic expansion of Lyapunov exponent for linear stochastic systems with small noises. Prikl. Mat. i Mekh. 46: 3 (1982), 358-365. (In Russ. )
- Gladyshev S. A., Milstein G. N. Method Runge-Kutta for calculating of Wiener integrals of exponential type. Zh. Vychisl. Mat. i Mat. Phiz. . 24 (1985), 1136-1149. (In Russ. )
- Milstein G. N. The probability approach to numerical solution of nonlinear parabolic equations. 1997. Preprint No. 380, WIAS. 29 p
- Milstein G. N., Tretyakov M. V. Stochastic numerics for mathematical physics. Berlin, Springer-Verlag Publ., 2004. 596 p
- Milstein G. N., Tretyakov M. V. Numerical integration of stochastic differential equations with nonglobally lipschitz coefficients. SIAM J. Numer. Anal. 43: 3 (2005), 1139-1154
- Milstein G. N., Tretyakov M. V. Numerical algorithms for forward-backward stochastic differential equations. SIAM J. Sci. Comput. 28: 2 (2006), 561-582
- Milstein G. N., Tretyakov M. V. Practical variance reduction via regression for simulating diffusions. Rseach Reports in Mathematics. Report No. MA-06-019, University of Leicester, 2006. 24 p
- Milstein G. N., Tretyakov M. V. Solving linear parabolic stochastic partial differential equations via averaging over characteristics. Reseach Reports in Mathematics. Report No. MA-07-009, University of Leicester, 2007. 26 p
- Milstein G. N., Platen E., Schurz H. Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35: 3 (1998), 1010-1019
- Platen E. A Taylor-Ito formula for semimartingales solving a stochastic differential equation. Springer Lecture Notesin Control and Inform. Sci. 36 (1981), 157-164
- Platen E. A generalized Taylor formula for solutions of stochastic differential equations. Sankhya. 44A (1982), 163-172
- Platen E. An approximation method for a class of Ito processes with jump component. Lietuvos Mat. Rink. 22 (1982), 124-136
- Platen E. Zur zeitdiskreten Approximation von Itoprozessen. Diss. B., IMath. Akad. der Wiss. der DDR, 1984. Berlin
- Platen E. Higher-order weak approximation of Ito diffusions by Markov chains. Probab. Eng. Inform. Sci. 6 (1992), 391-408
- Platen E. On weak implicit and predictor-corrector methods. Math. Comput. Simulation. 38 (1995), 69-76
- Platen E. An introduction to numerical methods for stochastic differential equations. Acta Numerica. 8 (1999), 197-246
- Platen E., Wagner W. On a Taylor formula for a class of Ito processes. Probab. Math. Statist. 3 (1982), 37-51
- Wagner W., Platen E. Approximation of Ito integral equations. Preprint ZIMM Akad. Wiss. DDR. Berlin. 1978. 27 p
- Mikulevicius R., Platen E. Time discrete Taylor approximations for Ito processes with jump component. Math. Nachr. 138 (1988), 93-104
- Mikulevicius R., Platen E. Rate of convergence of the Euler approximation for diffusion processes. Math. Nachr. 151 (1991), 233-239
- Hofmann N., Platen E. Stability of weak numerical schemes for stochastic differential equations. Comput. Math. Appl. 28: 10-12 (1994), 45-57
- Hofmann N., Platen E. Stability of superimplisit numerical methods for stochastic differential equations. Fields Inst. Communications. 9 (1996), 93-104
- Kloeden P. E., Platen E. The Stratonovich and Ito-Taylor expansions. Math. Nachr. 151 (1991), 33-50
- Kloeden P. E., Platen E. Numerical solution of stochastic differential equations. Berlin, Springer-Verlag Publ., 1992. 632 p
- Kloeden P. E., Platen E., Wright I. W. The approximation of multiple stochastic integrals. Stoch. Anal. Appl. 10: 4 (1992), 431-441
- Kloeden P. E., Platen E. Higher-order implicit strong numerical schemes for stochastic differential equations. J. Statist. Phisics. 66 (1992), 283-314
- Kloeden P. E., Platen E., Schurz H. Numerical solution of SDE through computer experiments. Berlin, Springer-Verlag Publ., 1994. 292 p
- Kloeden P. E., Platen E., Hofmann N. Extrapolation methods for the weak approximation of Ito diffusions. SIAM J. Numer. Anal. 32 (1995), 1519-1534
- Kloeden P. E., Platen E., Schurz H., Sorensen M. On effects of discretization on estimators of drift parameters for diffusion processes. J. Appl. Probab. 33 (1996), 1061-1076
- Arnold L., Kloeden P. E. Explicit formulae for the Lyapunov exponents and rotation number of two-dimensional systems with telegraphic noise. SIAM J. Appl. Math. 49 (1989), 1242-1274
- Kulchitsky O. Yu., Kuznetsov D. F. Expansion of Ito processes into Taylor-Ito series at the neighborhood of the fixed time moment. VINITI, 2637-В93 (1993), 26 p. (In Russ. )
- Kulchitsky O. Yu., Kuznetsov D. F. Approximation of multiple Ito stochastic integrals. VINITI, 1678-В94 (1994), 42 p. (In Russ. )
- Kuznetsov D. F. Finite-difference approximation of Taylor-Ito expansion and finite-difference methods for numerical integration of Ito stochastic differential equations. VINITI, 3509-В96 (1996), 24 p. (In Russ. )
- Kuznetsov D. F. Finite-difference method with local mean-square error of order 3 for numerical integration of Ito stochastic differential equations. VINITI, 3510-В96 (1996), 27 p. (In Russ. )
- Kuznetsov D. F. Theorems about integration order replacement in multiple stochastic integrals. VINITI, 3607-V97 (1997), 31 p. (In Russ. )
- Kuznetsov D. F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full orthonormal systems]. Differencial’nie uravnenia i processy upravlenia, 1997, no. 1 (In Russ. ) Available at: http://www.math.spbu.ru/diffjournal/pdf/j002.pdf
- Kulchitsky O. Yu., Kuznetsov D. F. The Unified Taylor-Ito expansion. Zap. Nauchn. Sem. POMI im. V. A. Steklova. 244 (1997), 186-204. (In Russ. )
- Kuznetsov D. F. Nekotorye voprosy teorii chislennogo resheniya stokhasticheskih differencial’nyh uravnenii Ito [Some problems of the theory of numerical solution of Ito stochastic differential equations]. St. -Petersburg, SPbGTU Publ., 1998, 203 p
- Kuznetsov D. F. [Method of expansion and approximation of repeated stochastic Stratonovich integrals, which is based on multiple Fourier series on full orthonormal systems]. Trudi Mezhdunarodnoi Konferencii " Asymptotichaeskie metody v veroyatnosti i matematicheskoi statistike” [Proc. Int. Conf. " Asymptotic methods in probability and mathematical statistics" ], St. -Petersburg, 1998, pp. 146-149
- Kuznetsov D. F. [Application of different full orthonormal systems of functions for numerical solution of Ito stochastic differential equations] Trudi Mezhdunarodnoi Konferencii " Differencial’nye Uravnenia i ih Primenenia" [Proc. Int. Conf. “Differential Equations and its Applications”], St. -Petersburg, 1998, pp. 128-129 (In Russ. )
- Kulchitsky O. Yu., Kuznetsov D. F. [Numerical simulation of stochastic systems of linear stationary differential equations]. Differencial’nie uravnenia i processy upravlenia, 1998, no. 1 (In Russ. ) Available at: http://www.math.spbu.ru/diffjournal/pdf/j010.pdf
- Kuznetsov D. F. Application of approximation methods of iterated Stratonovich and Ito stochastic integrals to numerical simulation of controlled stochastic systems. ProblemyUpravleniya i Informatiki 4 (1999), 91-108 (In Russ. )
- Kuznetsov D. F. An expansion of multiple Stratonovich stochastic integrals, based on multiple Fourier expansion. Zap. Nauchn. Sem. POMI im. V. A. Steklova. 260 (1999), 164-185. (In Russ. )
- Kuznetsov D. F. On problem of numerical modeling of stochastic systems. Vestnik Molodykh Uchenyh. Serya: Prikl. Mat. i Mekh. 1 (1999), 20-32. (In Russ. )
- Kuznetsov D. F. Chislennoye modelirovanie stokhasticheskih differencial’nyh uravnenii i stokhasticheskih integralov [Numerical modeling of stochastic differential equations and stochastic integrals]. St. -Petersburg, Nauka Publ., 1999. 460 p
- Kuznetsov D. F. Mean-square approximation of solutions of stochastic differential equations using Legendre’s polynomials. Problemy Upravleniya i Informatiki 5 (2000), 84-104 (In Russ. )
- Kuznetsov D. F Weak numerical method of order 4. 0 for stochastic differential Ito equations. Vestnik Molodykh Uchenyh. Serya: Prikl. Mat. i Mekh. . 4 (2000), 47-52. (In Russ. )
- Kuznetsov D. F Chislennoye integrirovanie stokhasticheskih differencial’nyh uravnenii [Numerical Integration of Stochastic Differential Equations], St. -Petersburg, State Univ. Publ.,. 2001. 712 p
- Kuznetsov D. F. New representations of explicit one-step numerical methods for jump-diffusion stochastic differential equations. Zh. Vychisl. Mat. i Mat. Phiz. 41: 6 (2001), 922-937. (In Russ. )
- Kuznetsov D. F. New representations of the Taylor-Stratonovich expansion. Zap. Nauchn. Sem. POMI im. V. A. Steklova. 278 (2001), 141-158. (In Russ. )
- Kuznetsov D. F. Finite-difference strong numerical methods of order 1. 5 and 2. 0 for stochastic differential Ito equations with nonadditive multidimensional noise. Problemy Upravleniya i Informatiki 4 (2001), 59-73. (In Russ. )
- Kuznetsov D. F. Combined method of strong approximation of multiple stochastic integrals. Problemy Upravleniya i Informatiki 4 (2002), 141-147. (In Russ. )
- Kuznetsov D. F. The three-step strong numerical methods of the orders of accuracy 1. 0 and 1. 5 for Ito stochastic differential equations Problemy Upravleniya i Informatiki. 6 (2002), 104-119. (In Russ. )
- Kuznetsov D. F. Chislennoye integrirovanie stokhasticheskih differencial’nyh uravnenii. 2. [Numerical Integration of Stochastic Differential Equations. 2. ], St. -Petersburg, Polytechnic Univ. Publ., 2006. 764 p
- Kuznetsov D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. Izd. 4-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. 4-th Ed. ], St. -Petersburg, Polytechnic Univ. Publ., 2010. 816 p
- Kuznetsov D. F. [Multiple Stochastic Ito and Stratonovich Integrals and Multiple Fourier Serieses]. Differencial’nie uravnenia i processy upravlenia, 2010, no. 3. 257 p. (In Russ. ) Available at: http://www.math.spbu.ru/diffjournal/pdf/kuznetsov_book.pdf
- Kuznetsov D. F. Multiple Ito and Stratonovich Stochastic Integrals: Approximations, Properties, Formulas. St. -Petersburg, Polytechnic Univ. Publ., 2013. 382 p
- Kuznetsov D. F. [Multiple Ito and Stratonovich Stochastic Integrals: Fourier-Legendre and Trigonometric Expansions, Approximations, Formulas]. Differencial’nie uravnenia i processy upravlenia, 2017, no. 1. 385 p. Available at: http://www.math.spbu.ru/diffjournal/EN/numbers/2017.1/article.2.1.html
- Arsen’ev D. G., Kulchitsky O. Yu. Optimization of algorithms of numerical integration of stiff linear systems of differential equations with constant coefficients. VINITI, 732-B86 (1986), 32 p. (In Russ. )
- Schurz H. Asymptotical mean square stability of an equilibrium point of some linear numerical solutions with multiplicative noise. Stoch. Anal. Appl. 14 (1996), 313-354
- Pettersson R. The Stratonovich-Taylor expansion and numerical methods. Stoch. Anal. Appl. 10: 5 (1992), 603-612
- Mikulevicius R. On some properties of solutions of stochastic differential equations. Lietuvos Mat. Rink. 4 (1983), 18-31
- Clements D. J., Anderson B. D. O. Well behaved Ito equations with simulations that always misbehave. IEEE Trans. Automat. Control. AC-18 (1973), 676-677
- Wright D. J. The digital simulation of stochastic differential equations. IEEE Trans. Automat. Control. AC-19 (1974), 75-76
- Wright D. J. Digital simulation of Poisson stochastic differential equations. Internat. J. Systems Sci. 6 (1980), 781-785
- Rumelin W. Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal. 19 (1982), 604-613
- Gard T. C. Introduction to stochastic differential equations. N. Y., Marcel Dekker Publ., 1988. 324 p
- Chang C. C. Numerical solution of stochastic differential equations with constant diffusion coefficients. Math. Comput. 49 (1987), 523-542
- Allen E. Modeling with Ito stochastic differential equations. Dordrecht, Springer Publ., 2007. 240 p
- Allen E. Approximation of Triple Stochastic Integrals Through Region Subdivision. Communications in Applied Analysis. (Special Tribute Issue to Professor V. Lakshmikantham), 17 (2013), 355-366
- Greenside H. S., Helfand E. Numerical integration of stochastic differential equations. II. Bell SystemTech. J. 60 (1981), 1927-1940
- Klauder J. R., Petersen W. P. Numerical integration of multiplicative-noise stochastic differential equations. SIAM J. Numer. Anal. 22 (1985), 1153-1166
- Hernandez D. B., Spigler R. Convergence and stability of implicit Runge-Kutta methods for systems with multiplicative noise. BIT. 33 (1993), 654-669
- Haworth D. C., Pope S. B. A second-order Monte-Carlo method for the solution of the Ito stochastic differential equation. Stoch. Anal. Appl. 4 (1986), 151-186
- Artem’ev S. S., Shkurko I. O. [Numerical solution of linear systems of stochastic differential equations] Trudy VII Vsesoyuzn. Soveschaniya “Metody Monte-Karlo v vychislitel’noi matematike i matematicheskoi fizike” [Proc. Conf “Monte-Carlo methods in computational mathematics and mathematical physics”], Novosibirsk, 1985. pp. 144-146. (In Russ. )
- Artem’ev S. S., Yakunin M. A. Matematicheskoye i statisticheskoye modelirovanie v finansah [Mathematical and statistical modeling in finances], Novosibirsk, IVMMG SO RAN Publ., 2008. 174 p
- Shkurko I. O. Numerical solution of linear systems of stochastic differential equations. Numer. Methods Statist. Modeling. Collected Scientific Works. Novosibirsk, 1987. p. 101-109
- Averina T. A., Artem’ev S. S. New family of numerical methods for solving of stochastic differential equations. Dokl. Ak. Nauk SSSR, 288: 4 (1986), 777-780. (In Russ. )
- Wagner W. Unbiased Monte-Carlo evaluation of certain functional integrals. J. Comput. Phys. 71 (1987), 21-33
- Wagner W. Monte-Carlo evaluation of functionals of solutions of stochastic differential equations. Variance reduction and numerical examples. Stoch. Anal. Appl. 6 (1988), 447-468
- Richardson J. M. The application of truncated hierarchy techniques in the solution of a stochastic linear differential equation. In Stochastic Processes in Mathematical Phisics and Engineering. Proc. Symp. Appl. Math. Ed. R. Bellman. Amer. Math. Soc. Providence RI. 16 (1964), 290-302
- McKenna J., Morrison J. A. Moments and correlation functions of a stochastic differential equation. J. Math. Phys. 11 (1970), 2348-2360
- McKenna J., Morrison J. A. Moments of solutions of a class of stochastic differential equations. J. Math. Phys. 12 (1971), 2126-2136
- Klauder J. R., Petersen W. P. Spectrum of certain non-self-adjoint operators and solutions of Langevin equations with complex drift. J. Statist. Phys. 39 (1985), 53-72
- Newton N. J. An asymptotically efficient difference formula for solving stochastic differential equations. Stochastics. 19 (1986), 175-206
- Newton N. J. Asymptotically optimal discrete approximations for stochastic differential equations. In theory and applications of nonlinear control systems. Ed. C. Byrnes, A. Lindquist. Amsterdam, 1986, p. 555-567
- Newton N. J. Asymptotically efficient Runge-Kutta methods for a class of Ito and Stratonovich equations. SIAM J. Appl. Math. 51 (1991), 542-567
- D. J. Higham, X. Mao, A. M. Stuart. Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40 (2002), 1041-1063
- Korenevsky M. L. [About optimization of one method of approximate calculation of matrix exponent]. Trudy Mezhdunarodnoi Konferencii “Sredstva matematicheskogo modelirovania” [Proc. Int. Conf. “Tools of Mathematical Modeling”], St. -Petersburg, 1997, pp. 125-134. (In Russ. )
- Djakonov V. P. Spravochnic po primeneniu sistemy PC MatLab [Handbook on application of PC MatLab]. Moscow, Nauka Publ., 1993. 111 p
- Djakonov V, P. MATLAB 6. 5 SP1/7. 0 + Simulink 5/6. Osnovy primeneniya. [MATLAB 6. 5 SP1/7. 0 + Simulink 5/6. The Basics of application]. Moscow, SOLON-press Publ., 2005. 800 p