The Integration of Harry Dym and Korteweg-de Vries Equations in Parametric Form
Author(s):
Natalya Konstantinovna Volosova
4th year student
Dept. of applied mathematics 1
Moscow State University of Railway
Engineering, 9, of. 9, St. Obraztsova, Moscow, 127994, Russia
konstantinvolosov@yandex.ru
Aleksandra Konstantinovna Volosova
konstantinvolosov@yandex.ru
Konstantin Aleksandrovich Volosov
DSc in phisics and mathematics
Professor
Dept. of applied mathematics 1
Moscow State University of Railway
Engineering, 9, of. 9, St. Obraztsova, Moscow, 127994, Russia
konstantinvolosov@yandex.ru
Abstract:
In the present work we for the first time apply a relatively new method of
constructive unfixed change of variables to the Harry Dym (HD) and
the Korteweg--de Vries (KdV) equations. We construct two dynamical
systems and formulate necessary conditions for the stability of phase trajectories.
A system of functional algebraic equations is constructed and it is proved
that two formal solvability conditions for a system of first order
partial differential equations have one non--trivial common factor.
An important feature of the HD and KdV equations was found: after an unfixed
constructive change of variables, a new "hidden" key equation for the function
of the partial first derivative can be separated from the other equations.
The exact solutions constructed with the help of a non-autonomous dynamical
system coincide with global solutions. That is not the case for equations
with dissipation. Two classes of exact solutions are found
for the HD and for the KdV equation. A possibility arises
to construct new asymptotic solutions.
Keywords
- accurately
- function for the first derivative in new variables is exact
- Harry Dym and Korteweg - de Vries equations
- method of
- not fixed constructive change of variables
- two new wide classes of exact solutions
References:
- Maslov V. P. Asymptotic and perturbation Theory. Nauka, Moscow. 1988. (in Russian)
- Maslov V. P., Tsupin V. A. Sovrem. problems of Math., 1977, № 8, p. 273
- Maslov V. P., Omel'yanov G. A. Geometric Asymptotics for Nonlinear PDE. Amer. Math. Soc. Providence 2001, v. 202, 360 p
- Maslov V. P. Quantum Economics, Nauka, Moscow, 2007, 80 p. (in Russian)
- Maslov V. P., Danilov V. G., Volosov K. A. Mathematical Modeling of Technological Processes on LSI Circuil Production. (MIEM, Moscow, 1984, Moscow, MIEM, 1984. ) (in Russian)
- Maslov V. P., Danilov V. G., Volosov K. A. Mathematical Modeling of Heat and Mass Transfer Processes. (Evolution of Dissipative Structures, addition of Kolobov N. A. ) (Nauka, Moscow, 1987. ) (in Russian)
- Maslov V. P., Danilov V. G., Volosov K. A. Mathematical Modelling of Heat and Mass Transfer Processes. Kluver Academic Publishers. Dordrecht, Boston, London, 1995. - 316 p
- Clarkson P. A., Kruskal M. D. New similarity reduction of the Boussinesq equation. J. Math. Phys., 1989, V. 30, № 10, pp. 2201-2213
- Solitons. Edited by R. K. Bullough, P. J. Caudrey (with contributions by R. K. Bullought, F Calogero, P. J. Caudrey, A. Degasperis, L. D. Faddev, H. M. Gibbs, R. Hirota, G. L. Lamb, Jr, A. H. Luther, D. W. McLaughlin, A. C. Newell, S. P. Novikov, M. Toda, M. Wadati, V. E. Zakharov). New Yurk. 1980
- Volosov K. A. Transformation of Approximate solutions of liner parabolic equations into asymptotic solutions of quasilinear parabolic equations. Mathematical Notes. - 1994. - Vol. 56. № 5-6, P. 1295-1299. English transl. in Mat. Zametki 56 (6) 122-126 (1994)
- Volosov K. A. Differential Equations. Pleiades Publishing Ltd., ISSN 0012-2661. Vol. 43, № 4, p. 507-512, 2007
- Volosova A. K., Volosov K. A. Construction Solutions of PDE in Parametric Form. Hindawi Publishing Corporation. International Journal of Mathematics and Mathematical Sciences. V. 2009, Article ID 319269, 17 p., http:// www. hindawi. com/journals/ijmms/2009/319269. htmt. doi:10. 1155/2009/319269
- Volosova A. K., Volosov K. A. Stochastic systems under periodic and white noise external excitation. The 3rd International Conference on Nonlinear Dynamics Nd-KhPI 2010, Khakov, Ukraine, p. 437-442
- Volosov K. A. Construction of solutions of PDE. Journal of Applied and Industtrial Mathematics, 2009, V. 3, № 4, pp. 519-527
- Volosov K. A. Doctorial dissertation, MIEM, Moscow, Russia, MIIT, 2007, http://eqworld.ipmnet.ru dis volosov Doc2007. pdf
- Volosov K. A. Implicit formulas for exaxt solutions of quasilinear partial differential equations. (Russian) Dokl. Akad. Nauk 2008, V. 418, № 1, p. 11-14. Engl. tran. in Doklady Mathematics. 2008, V. 77, № 1, pp. 1-4
- Kudrashov N. A. From singular manifold to integrable evolution equations. J. Phys. A: Math. Gen. 27, (1994) 2457-2470. print in the UK
- Volosov K. A., Vdovina E. K., Volosova A. K. Accompany matrix of the Korteweg - de Vries equation. International conference on the differential equations. Samara-Diff 2011, 26-30 june 2011, p. 32-33. Math-Net. Ru, Google Schoar, ZentralBlatt
- Volosov K. A., Vdovina E. K., Volosova A. K. Accompany matrix of the Korteweg - de Vries equation. 8th International ISAAC Congress. Moscow, 22-27 august 2011, p. 278 Math-Net. Ru, Google Schoar, ZentralBlatt
- Volosov K. A., Vdovina E. K. About expansion of number of models which have pairs of Lax's. International Journal Equation and Applications. 2012, v. 11, № 1, p. 27-30
- Volosov K. A., Volosova N. K., Volosova A. K., Vakulenko S. P. The theory adding to equation of Korteweg - de Vries. LXX International jubilee conference. St. Peterburg. Herzen State Pedagogical University of Russia, 10-15 April 2017, p. 38-52
- Bratus A. S., Volosov К. A. Exact solutions of the Hamilton-Jacobi-Bellman equation for problems of optimal correction with an integral constraint on the total control resources. (Russian) Dokl. Akad. Nauk 385 (2002), № 3, p. 319-322. Engl. tran. in Doklady Mathematics. V. 66, № 1, 2002, pp. 148-151
- Bratus A. S., Volosov К. A. Exact solutions of the Hamilton-Jacobi-Bellman equation for problems of optimal correction with a constrained overall control resourse. (Russian) Prikl. Mat. Mekh. V. 68 (2004) - № 5, pp. 819-832. Engl. tran. in J. Appl. Math. and Mech. V. 68, (2004), pp. 731-742
- Volosov K. A., Danilov V. G., Maslov V. P. Combustion wave asymptotics in nonlinear inhomogeneous media with slowly varying properties. Dokl. Akad. Nauk SSSR 290:5 (1986), 1089-1094 (Russian); English transl. in Soviet Math. Dokl
- Volosov K. A., Danilov V. G., Maslov V. P. Weak discontinuity structure of solutions of quasilinear parabolic equations. Mat. Zametki 43:6 (1988), 829-838 (Russian); English transl. in Math. Notes
- Maslov V. P., Tsupin V. A. !!!! ERROR!!! IMAGE IS NOT ALLOWERD! -shaped Sobolev generalized solutions of quasilinear equations. Russian mathematical Surveys. 1979. V. 34, № 1 (205), 231-236. http://dx.doi org/10. 1070/RM1979v034n01ABEH002884
- Maslov V. P., Omel'yanov G. A., Tsupin V. A. Asymptotics of some differential and pseudodifferential equations, and dynamical systems with small dispersion. Math. USSR - Sb. 50:1 (1985), 191-212
- Maslov V. P., Tsupin V. A. Propagation of a shock wave in an isentropic gas with small viscosity. Journal of Soviet Mathematics. 1980, V. 13, № 1, pp. 163-185
- Maslov V. P., Omel'yanov G. A. Asymptotic soliton - form solutions of equations with small dispersion. Russian math. Surveys, V. 36, № 3, (1981), pp. 73-149
- Dobrochotov S., Maslov V. Multyphase asymptotics of nonlinear partial equations with a small parameter. Tn. Sov. Science rev., Phys. Rev., 1981. Amsterdam: Over Publ. Ass, 1982
- Maslov V. P., Omel'yanov G. A. Soliton - like asymptotics of internal waves in a stratified fluid with small dispersion (Russian) Differentsial'nye Uravneniya V. 21. (1985), № 10, 1766-1775, 1837
- Maslov V. P. Three algebras corresponding to nonsmooth solutions of quasilinear hiperbolic equations, Uspekhi Math. Nauk, V. 35, (1980) (Russian); Englis transl. in Russian Math. Surveys
- Maslov V. P. The Complex WKB Method for Nonlinear Equations. I. Linear Theory, Birkhä user, Basel - Boston - Berlin, 1994
- Maslov V. P. Nonstandard characteristics in asymptotic problems, Uspeki Mat. Nauk V. 38:6 (1983), pp. 3-36
- Danilov V. G., Omel'yanov G. A., Shelkovich V. M. Weak asymptotics and interaction of nonlinear waves. Translation of the American Mathematical Society. Series 2 208 (2003), 33-164