Mathematical Model of the Problem of Distribution in Conditions of Uncertainty
Author(s):
Valery Borisovich Vilkov
The army general A.V. Khrulyov military academy of logistics
St.-Petersburg, Russia.
Candidate of physico-mathematical Sciences,
associate Professor of the Department of scientific and technical disciplines
amirusha@rambler.ru
Alexander Vladimirovich Flegontov
St-Petersburg State University, St.-Petersburg,
Herzen State Pedagogical University of Russia, St.-Petersburg, Russia.
Doctor of Sciences, Professor,
Head of the Department of computer engineering and software development
flegontoff@yandex.ru
Andey Kliment’evich Chernykh
St.-Petersburg military institute of armies of national
guards of Russian Federation,
St.-Petersburg, Russia.
Doctor of technical Sciences, Professor,
Department of Informatics and mathematics
nataliachernykh@mail.ru
Abstract:
A mathematical model of the problem of distribution in
conditions of uncertainty is considered. The main problem is
formulated on the example of the plan selection for
specialist development programme implementation.
The solution is based on
approaches of the graph theory, fuzzy set theory and fuzzy logic, and
linear programming.
Theoretical principles are illustrated by meaningful examples.
A natural generalization of the considered problem is proposed.
Keywords
- fuzzy decision
- fuzzy logic
- fuzzy sets
- the optimal plan for the problem solving
- training plan
References:
- Vilkov V. B., Chernykh A. K. Theorya i practika optimizatsii upravlencheskikh rechenii v usloviyakh ChS na transporte: monografya. SPb. : Sant-Petersburg Universyti GPS MChS Rossii, 2016 - 162 s
- Berg K. Theorya grafov i ee primenenya. - M. :IL, 1962. - 320 s
- Ore O. Theorya grafov. - M. : Nauka, 1968. - 352 s
- Zadeh L. Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiu pribligennykh rechenii. - M. : Mir, 1976. - 166 s
- Kofman A. Vvedenie v theoriu nechetkikh mnogestv. - M. : Radio i svyaz, 1982. - 429 s
- Leonenkov A. V. Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH. - SPb. : BKhV-Peterburg, 2005. - 725 s
- Orlovskii S. A. Problemy prinyatiya rechenii pri nechetkoi iskhodnoy informasei. - M. : Nauka, 1981. - 206 s
- Yakhyaeva G. E. Nechetkie mnogestva i neyronnye seti. - M. : Binom, 2006. - 315 s
- Zadeh L. A. Fuzzy sets. - Information and Control, 1965, vol. 8, N 3, p. 338-353
- Chernykh A. K., Vilkov V. B. Upravlenye bezopastnostyu transportnykh perevozok pri organizasyi materialnogo obespecheniya sil i sredstv MChS Rossii v usloviakh chrezvychaynoy situasii// Pogarovzryvobezopastnost’. 2016. V. 25. Т 9. P. 52-59
- Chernykh A. K., Kozlova I. V., Vilkov V. B. Voprosy prognozirovanya material’no-tekhnicheskogo obespechenya s ispolzovaniem nechetkikh mathematicheskikh modeley// Problemy upravlenya riskamy v thekhnosfere. 2015. N 4 (36). P. 107-117
- Vilkov V. B., Chernykh A. K., Flegontov A. V. Theorya i practika optimizatsii rechenii na osnove nechetkikh mnogestv i nechetkoi logiki. SPb. : Izd. RGPU im. A. I. Gerzena. Monografya, 2017. -160 s
- Terano T., Asai K., Sugeno M. Prikladnye nechetkie sistemy. - M. : Mir, 1993. - 368 s
- Shtovba S. D. Vvedenie v theoriu nechetkikh mnogestv i nechetkuu logiku. - Vinniza: UNIVERSUM- Vinniza, 2001. - 71 s
- Vagner G. Osnovy issledovanya operasyi. V. 1. - M. : Mir, 1972. -335 s