ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Bifurcation Analysis of Some Classes of Nonlinear Boundary Value Problems with Parameter

Author(s):

Daria Vladislavovna Chemkaeva

postgraduate in the department of Computional Science and IT,
01.01.07 "Computational mathematics"
Herzen State Pedagogical University.

dariachemkaeva@yahoo.com

Abstract:

This study deals with the number of positive solutions of an autonomous ordinary differential equation of the second order with parameter and with homogeneous boundary conditions. The nonlinear function in the equation is a polynomial of odd degree. We investigate the number of positive solutions of the problem. depending on parameter. To find the number of such solutions we use the Korman-Li-Oyang theorem, which determines the bifurcation points of boundary value problem. Examples and bifurcation diagrams confirm the research.

Keywords

References:

  1. Ludwig D., Aronson D. G., Weinberger H. F. Spatial patterning of the spruce budworm. J. Math. Biol, 1979; (8): 217-258
  2. Zaitsev V. F., Polyanin A. D. Spravochnik po obyknovennim differencialnim uravneniyam [Handbook of ordinary differential equations]. Moscow, Fizmatlit, 2001. 576 p
  3. Korman P., Li Y., Ouyang T. Computing the location and the direction of bifurcation. Math. Research Letters, 2005; (12): 933-944
  4. Harley Ch., Momoniat E. Alternate Derivation of the Critical Value of the Frank-Kamenetskii Parameter in Cylindrical Geometry. Journal of Nonlinear Mathematical Physics, 2008. - 15. 69-76
  5. Korman P., Li Y., Ouyang T. Exact multiplicity results for boundary value problems with nonlinearities generalizing cubic. Proceedings of the Royal Society of Edinburgh, 1996. - 126 (3). 599-616
  6. Korman P., Li Y., Ouyang T. Verification of bifurcation diagrams for polynomial-like equations. Journal of Computational and Applied Mathematics, 2008: 187-193

Full text (pdf)