The Jacobi Equation for Horizontal Geodesics on a Nonholonomic Distribution and the Schouten Curvature Tensor
Author(s):
Victor Revoltovich Krym
PhD in Physics and Mathematics
St.-Petersburg Mathematical Society
Fontanka, 27, 191023, St.-Petersburg
vkrym12@rambler.ru
Abstract:
The paper shows that if the distribution is defined on a manifold
with the special smooth structure and does not depend on the vertical
coordinates, then the Schouten curvature tensor coincides with the Riemannian
curvature tensor. The Schouten curvature tensor is used to write the Jacobi equation for the distribution.
This leads to studies on second-order optimality conditions for the horizontal geodesics in sub-Riemannian geometry.
New example of a distribution with abnormal geodesics is constructed, their optimality being an open problem.
Keywords
- abnormal geodesics
- conjugate points
- Jacobi equation
- nonholonomic distributions
- Schouten curvature tensor
- sub-Riemannian geometry
References:
- Bliss G. A. Lectures on the calculus of variations. Chicago, Illinois, The University of Chicago Press, 292 p
- Vershik A. M., Gershkovich V. Ya. Nonholonomic dynamical systems. Geometry of distributions and variational problems. Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr. VINITI 16 (1987) 5-85
- Vershik A. M., Gershkovich V. Ya. The nonholonomic Laplace operator. Probl. Mat. Anal. 11 (1990) 96-108
- Gromov M. Carnot-Carathé odory spaces seen from within. Prog. Math. 1996, 144, 79-323
- Vranceanu G. Parallé lisme et courbure dans une varié té non holonome. Atti del congresso lnternaz. del Mat. di Bologna, 1928, 6
- Schouten J. A., van Kampen D. Zur Einbettung und Krü mmungstheorie nichtholonomer Gebilde. Math. Annalen. 1930. V. 103. P. 752-783
- Schouten J. A., Kulk V. D. Pfaffs problem and its generalization. Oxford: Clarendon Press, 1949
- Vagner V. V. Differentsialnaya geometriya negolonomnykh mnogoobrazij [The differential geometry of nonholonomic manifolds]. Kazan (1939)
- Vagner V. V. Geometricheskaya interpretatsiya dvizheniya negolonomnyh dynamicheskih system [Geometric interpretation of the motion of nonholonomic dynamical systems]. Trudy seminara po vectornomu i tensornomu analisu. 1941. N 5. PP. 301-327.
- Gorbatenko E. M. The differential geometry of nonholonomic manifolds according to V. V. Vagner. Geom. Sb. Tomsk univ. 26 (1985) 31-43. (in Russ. )
- Krym V. R. Jacobi fields for a nonholonomic distribution. Vestnik St. Petersburg University: Mathematics 43(4) (2010) 232-241
- Arutyunov A. V. Second-order conditions in extremal problems. The abnormal points. Transactions of the American Mathematical Society. 1998. Vol. 350, № 11. P. 4341-4365
- Arutyunov A. V. Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi [Extremum conditions. Anormal and degenerated problems]. Moscow, Factorial, 1997. (in Russ. )
- Petrov N. N. Existence of abnormal minimizing geodesics in sub-Riemannian geometry. Vestn. St. Petersbg. Univ., Math. 26(3) (1993) 33-38
- Petrov N. N. On the shortest sub-Riemannian geodesics. Differ. Equations 30(5) (1994) 705-711
- Petrov N. N. A problem of sub-Riemannian geometry. Differ. Equations 31(6) (1995) 911-916
- Montgomery R. A survey of singular curves in sub-Riemannian geometry. J. Dynam. Contr. Syst. 1995, N1, P. 49-90
- Dmitruk A. V. Quadratic sufficient minimality conditions for abnormal sub-Riemannian geodesics. J. Math. Sci. 2001, V. 104, N1, P. 779-829
- Bryant R. L., Hsu L. Rigidity of integral curves of rank-2 distributions. Invent. Math. 1993, V. 114, N2, P. 435-461
- Philippov A. F. On some questions of the theory of optimal control. Vestnik Moscovskogo Gosudarstvennogo Univ., ser. Math. and Mech. 1959. N2. P. 25-32
- Rashevskii P. K. Any two points of a totally nonholonomic space can be connected by an admissible curve. Uchenye zapiski Moskovskogo ped. in-ta im. Libknechta, ser. phys. -mat. 1938. N2. P. 83-94
- Chow W. L. Ű ber Systeme von linearen partiellen Differential-gleichungen erster Ordnung. Math. Ann. 1939. V. 117, N1. P. 98-105
- Krym V. R., Petrov N. N. Causal structures on smooth manifolds. Vestn. St. Petersbg. Univ., Math. 34(2) (2001) 1-6
- Krym V. R., Petrov N. N. The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution. Vestn. St. Petersbg. Univ., Math. 41(3) (2008) 256-265
- Krym, V. R. The topological quantization of charges in the Kaluza-Klein theory. Vestn. St. -Petersburg. un-ta, ser. 4. 2009. N 3. PP. 3-12. (In Russ. )
- Krym, V. R. Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions. Theor. Math. Phys. 119(3) (1999) 811-820
- Krym, V. R., Petrov, N. N. Equations of motion of a charged particle in a five-dimensional model of the general theory of relativity with a nonholonomic four-dimensional velocity space. Vestn. St. Petersbg. Univ., Math. 40(1) (2007) 52-60
- Aharonov Y., Bohm D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev., 2nd series. 1959. Vol. 115. N 3. P. 485-491
- Esteban M. J., Georgiev V., Sere E. Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calculus of Variations. 1996. V. 4. P. 265-281
- Krym V. R. Index form for nonholonomic distributions. Vestnik St. Petersburg University: Mathematics 45(2) (2012) 73-81
- Krym V. R. The Schouten Curvature for a Nonholonomic Distribution in Sub-Riemannian Geometry and Jacobi Fields. Proceedings of the School-Seminar on Optimization Problems and their Applications (OPTA-SCL 2018). Omsk, Russia, July 8-14, 2018. CEUR Workshop Proceedings, v. 2098 (2018).
- Matveev N. M. Metody integrirovaniya obyknovennykh differentialnykh uravnenyi [Methods of integration of ordinary differential equations]. Moscow: Higher School, 1963
- Hartman P. Ordinary differential equations. 2nd ed., unabridged, corrected republication of the 1982 original edn. Philadelphia, PA: SIAM (2002)
- Burago Yu. D., Zalgaller V. A. Vvedenie v rimanovu geometriyu [Introduction in Riemannian geometry]. St. -Petersburg, Nauka, 1994
- Zelikin M. I. Optimalnoe upravlenie i variatsionnoe ischislenie [Optimal control and variational calculus]. Moscow, LENAND, 2017