Estimation of Topological Entropy for Cocycles with Cellular Automaton As a Base System
Author(s):
Viktoriia Evgenyevna Egorova
Student of Department of Applied Cybernetics,
Faculty of Mathematics and Mechanics
Saint-Petersburg State University.
egorova_ve2107@mail.ru
Volker Reitmann
Doctor of Physical and Mathematical Sciences,
Professor of the Department of Applied Cybernetics,
Faculty of Mathematics and Mechanics,
Saint-Petersburg State University.
vreitmann@aol.com
Abstract:
We study a discrete non-autonomous control system.
It is shown that the cellular automaton has the structure
of a dynamical system, therefore it can be considered as a base system.
For a discrete non-autonomous control system, a cocycle consisting
of a base system and an evolutionary system is constructed.
An upper bound for the topological entropy for a cocycle of a discrete
non-autonomous control system over a base system generated by
a cellular automaton is obtained. As an example, we study the non-autonomous
Henon system, whose parameters depends on the cellular automaton,
for which the state of the cell is determined by the disjunction of the
cell itself and two neighboring cells. The inequality for estimating
the growth exponents of the Henon mapping is obtained. In addition, we obtain
an estimate for the fractal dimension of the compact invariant set of the Henon
system. The behavior of the trajectories of the non-autonomous Henon system
with some certain parameters and certain initial data is demonstrated.
Keywords
- cellular automata
- cocycles
- discrete control systems
- non-autonomous Henon system
- topological entropy
References:
- Afrajmovich V. S., SHereshevskij M. A. On the Notion of topological dynamics of cellular automata. Metody kachestvennoj teorii i teorii bifurkacij. Mezhvuzovskij tematicheskij sbornik nauchnyh trudov. Pod redakciej L. P. SHaposhnikova. Gor'k. gos. universitet, 138-151, 1989. (In Russ. )
- Lakshtanov, E. L., Langvagen, E. S. Criteria for infinity value of topological entropy of multidimensional cellular automata, Problemy peredachi informacii, 40(2):70-72, 2004. (In Russ. )
- Lakshtanov, E. L., Langvagen, E. S. Entropy of multidimensional cellular automata. Problemy peredachi informacii, 42(1):43-51, 2006
- Kolmogorov, A. N. New Metric Invariant of Transitive Dynamical Systems and Endomorphisms of Lebesgue Spaces, DAN SSSR, 119(5):861-864, 1958. (In Russ. )
- Sinaj, YA. G. On the Notion of Entropy of a Dynamical System, DAN SSSR, 124(4):768-771, 1959. (In Russ. )
- Leonov, G. A. Formulas for the Lyapunov dimension of Henon and Lorenz. Algebra i analiz, 13(3):155-170, 2001. (In Russ. )
- Reitmann, V., Dinamicheskiye sistemy, attraktory i otsenki ikh razmernosti [Dynamical Systems, Attractors and Estimates of their Dimension]. St. Petersburg, St. Univ. Publ., 2013. (In Russ. )
- R. Adler, A. Konheim, H. McAndrew. Topological entropy. Transactions of the American Mathematical Society, 114(2):309-319, 1965
- V. A Boichenko, G. A. Leonov, V. Reitmann. Dimension Theory for Ordinary Differential Equations. Teubner, Wiesbaden, 2005
- R. Bowen. Entropy for group endomorphisms and homogeneous spaces. Transactions of the American Mathematical Society, 153:401-414, 1971
- M. D'amico, G. Manzini, L. Margara. On computing the entropy of cellular automata. Theoretical Computer Science, 290(3):1629 -1646, 2003
- P. Grassberger, H. Kantz, U. Moenig. On the symbolic dynamics of the Henon map. Journal of Physics A: Mathematical and General, 22(24):5217, 1989
- M. Henon. A two-dimensional mapping with a strange attractor. The Theory of Chaotic Attractors, 94-102. Springer, 1976
- B. Hunt. Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors. Nonlinearity, 9(4):845, 1996
- C. Kawan. Metric entropy of nonautonomous dynamical systems. Nonautonomous dynamical systems, 1(1), 2014
- P. Kloeden, B. Schmalfuß. Nonautonomous systems, cocycle attractors and variable time-step discretization. Numerical Algorithms. Springer, 14(1- 3):141-152, 1997
- S. Kolyada, L. Snoha. Topological entropy of nonautonomous dynamical systems. Random and computational dynamics, 4(2):205, 1996
- A. A. Maltseva, V. Reitmann. Existence and dimension properties of a global B-pullback attractor for a cocycle generated by a discrete control system. Differential Equations, 53(13):1703-1714, 2017
- J. Milnor. On the entropy geometry of cellular automata. Complex Systems, 2(3):357-385, 1988
- A Noack. Hausdorff dimension estimates for time-discrete feedback control systems. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 77(12):891-899, 1997
- J. Von Neumann. The general and logical theory of automata. Cerebral mechanisms in behavior. New York: John Wiley& Sons, 1(41), 1951
- S. Wolfram. Statistical mechanics of cellular automata. Reviews of modern physics. APS, 55(3):601, 1983