The Technique for Accurate and Approximate Synthesis of Optimal Continuous-time Stochastic Control Systems
Author(s):
Konstantin Rybakov
Moscow Aviation Institute (National Research University)
rkoffice@mail.ru
Abstract:
Based on the extension principle the sufficient optimality conditions
are formulated to estimate the accuracy of the approximate solution
for the optimal control problem with respect to the optimality criterion
value for continuous-time stochastic systems. The technique for solving
optimal control problems using such conditions is illustrated by the example
of finding program control and feedback control for a linear stochastic system.
Keywords
- extension principle
- feedback control
- incomplete information
- optimal control
- optimal synthesizing function
- optimality conditions
- program control
- stochastic system
References:
- Averbukh V. I., Smolyanov O. G. Theory of differentiation in linear topological spaces. Russian Mathematical Surveys, 1967, vol. 22, no. 6, pp. 201-258
- Averbukh V. I., Smolyanov O. G. The various definitions of the derivative in linear topological spaces. Russian Mathematical Surveys, 1968, vol. 24, no. 4, pp. 67-113
- Averina T. A. Chislennye metody. Algoritmy modelirovaniya sistem so sluchainoi strukturoi [Numerical Methods. Algorithms for Modeling Systems with Random Structure]. Moscow, Yurait Publ., 2018
- Bellman R. Dynamic programming. Princeton University Press, 1957
- Bogachev V. I., Krylov N. V., Rockner M., Shaposhnikov S. V. Fokker-Planck-Kolmogorov Equations. AMS, 2016
- Gurman V. I. Printsip rasshireniya v zadachakh upravleniya [Principle of Extension in Problems of Control]. Moscow, Nauka Publ., 1997
- Krotov V. F. [Methods of solution of variational problems on the basis of sufficient conditions of absolute minimum]. Avtomatika i telemekhanika, 1962, vol. 23, no. 12, pp. 1571-1583; 1963, vol. 24, no. 5, pp. 581-598. (In Russ. )
- Krotov V. F., Gurman V. I. Metody i zadachi optimal'nogo upravleniya [Methods and Problems of Optimal Control]. Moscow, Nauka Publ., 1973
- Krotov V. F., Lagosha B. A., Lobanov S. M., Danilina N. I., Sergeev S. I. Osnovy teorii optimal'nogo upravleniya [Fundamentals of Optimal Control Theory]. Moscow, Vysshaya Shkola Publ., 1990
- Krylov N. V. Controlled Diffusion Processes. Springer, 1980
- Krylov N. V., Rozovskii B. L. On conditional distributions of diffusion processes. Mathematics of the USSR - Izvestiya, 1978, vol. 12, no. 2, pp. 336-356
- Kuznetsov D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automation and Remote Control, 2018, vol. 79, no. 7, pp. 1240-1254
- Kuznetsov D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automation and Remote Control, 2019, vol. 80, no. 5, pp. 867-881
- Levakov A. A. Metody integrirovaniya stokhasticheskikh differentsial'nykh uravnenii [Methods for Solving Stochastic Differential Equations]. Minsk, BSU Publ., 2010
- Ø ksendal B. Stochastic Differential Equations. An Introduction with Applications. Springer-Verlag, 2000
- Panteleev A. V. Sufficient conditions for optimality for continuous stochastic control systems on the basis of an incomplete state vector. Soviet Mathematics, 1990, vol. 34, no. 11, pp. 62-75
- Panteleev A. V., Letova T. A. Metody optimizatsii v primerakh i zadachakh [Optimization Methods in Examples and Tasks]. Saint Petersburg, Lan Publ., 2008
- Panteleev A. V., Rybakov K. A. [Design of optimal nonlinear stochastic systems by spectral method]. Informatika i ee primeneniya, 2011, vol. 5, no. 2, pp. 69-81. (In Russ. )
- Panteleev A. V., Rybakov K. A. Metody i algoritmy sinteza optimal'nykh stokhasticheskikh sistem upravleniya pri nepolnoi informatsii [Methods and Algorithms for Synthesis of Optimal Stochastic Control Systems with Incomplete Information]. Moscow, MAI Publ., 2012
- Panteleev A. V., Rybakov K. A. Continuous optimal stochastic control systems with incomplete feedback: approximate synthesis. Automation and Remote Control, 2018, vol. 79, no. 1, pp. 103-116
- Panteleev A. V., Semenov V. V. Sintez optimal'nykh sistem upravleniya pri nepolnoi informatsii [Design of Optimal Control Systems with Incomplete Information]. Moscow, MAI Publ., 1992
- Panteleev A. V., Yakimova A. S., Rybakov K. A. Obyknovennye differentsial'nye uravneniya. Praktikum [Ordinary Differential Equations. Practical Work]. Moscow, Infra-M Publ., 2016
- Plotnikov M. Y., Khrustalev M. M. Dynamic programming method in control problem for diffusion processes with possible trajectory cut-off with incomplete state information. Journal of Computer and Systems Sciences International, 2005, vol. 44, no. 5, pp. 701-705
- Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F. The Mathematical Theory of Optimal Processes. John Wiley & Sons, 1962
- Rumyantsev D. S., Khrustalev M. M. Optimal control of quasi-linear systems of the diffusion type under incomplete information on the state. Journal of Computer and Systems Sciences International, 2006, vol. 45, no. 5, pp. 718-726
- Rumyantsev D. S., Khrustalev M. M., Tsarkov K. A. An algorithm for synthesis of the suboptimal control law for quasi-linear stochastic dynamical systems. Journal of Computer and Systems Sciences International, 2014, vol. 53, no. 1, pp. 71-83
- Rybakov K. A. [Sufficient optimality conditions in the problem of centralized control for switching diffusions]. Vestnik MAI, 2008, vol. 15, no 2, pp. 123-131. (In Russ. )
- Rybakov K. A. [Sufficient optimality conditions in the control problem for jump-diffusion systems]. XII Vserossiiskoe soveshchanie po problemam upravleniya (VSPU-2014) [Proc. 12th All-Russian Conference on Control Problems], Moscow, 2014, pp. 734-744. (In Russ. )
- Rybakov K. A. [Optimal control of stochastic systems with random sampling period]. Trudy MFTI, 2015, vol. 7, no. 1 (25), pp. 145-165. (In Russ. )
- Rybakov K. A., Sotskova I. L. An optimal control for random-structure nonlinear systems under incomplete state vector information. Automation and Remote Control, 2006, vol. 67, no. 7, pp. 1070-1081
- Savastyuk S. V., Khrustalev M. M. Optimization of stochastic diffusion systems with constraints on the control-observation process. Automation and Remote Control, 1991, vol. 52, no. 7, pp. 958-963; no. 8, pp. 1109-1114
- Fleming W. H., Rishel R. W. Deterministic and Stochastic Optimal Control. Springer-Verlag, 1975
- Khrustalev M. M. [Nash equilibrium conditions in stochastic differential games under incomplete information about the state]. Izv. RAN. Teoriya i sistemy upravleniya. 1995, no. 6, pp. 194-208; 1996, no. 1, pp. 72-79. (In Russ. )
- Khrustalev M. M., Khalina A. S. Optimal controller synthesis for linear stochastic systems with incomplete information regarding the state. Necessary conditions and numerical methods. Automation and Remote Control, 2014, vol. 75, no. 11, pp. 1948-1963
- Elliott R. J. Stochastic Calculus and Applications. Springer-Verlag, 1982
- Burrage K., Burrage P. M., Tian T. Numerical methods for strong solutions of stochastic differential equations: an overview. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, vol. 460, no. 2041, pp. 373-402
- Fleming W. H. Optimal control of partially observable diffusions. SIAM Journal on Control, 1968, vol. 6, no. 2, pp. 194-214
- Fleming W. H., Soner H. M. Controlled Markov Processes and Viscosity Solutions. Springer, 2006
- Kloeden P. E., Platen E. Numerical Solution of Stochastic Differential Equations. Springer, 1995
- Stroock D. W., Varadhan S. R. S. Multidimensional Diffusion Processes. Springer, 2006