ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Combination of the Method of Steps and an Expansion of the State Space for Analyzing Linear Stochastic Systems with Various Forms of Delays and Random Inputs in the Form of Additive and Multiplicative White Noises

Author(s):

Igor Egorovich Poloskov

Perm State University, Department of Higher Mathematics,
Head of the Department,
Associate Professor, Doctor of Physics and Mathematics
Russia, 614990, Perm, Bukirev St., 15

Igor.Poloskov@psu.ru

Abstract:

We represent the theoretical method and technique for stochastic analysis of systems of linear differential equations which have two forms of finite delays (concentrated and distributed) and are perturbed by additive and multiplicative white noises. The research problem is solved on the basis of constructing ordinary differential equations for the first moment functions of the system state vector. As a tool for such a construction, we consider a scheme that integrates the classical method of steps and an expansion of the state space, and uses the technique of multidimensional matrices. By using this scheme we construct a chain of systems of stochastic differential equations without delays, and then the equations for the moments required. The program implementing the proposed scheme was performed in the environment of the computer algebra package Mathematica and was used to analyze a model system. The final part of the work presents both the results of calculations and some details of the program algorithm.

Keywords

References:

  1. Azbelev N. V., Maksimov V. P., Pakhmatullina L. F. Elementy sovremennoi teorii functsional’no-differentsial’nykh uravnenii. Metody i prilojeniya [Elements of the modern theory of functional differential equations. Methods and Applications]. Moscow, Institut Computernykh Issledovanii Publ, 2002. 384 p.
  2. Andreeva E. A., Kolmanovskii V. B., Shaikhet L. E. Upravlenie sistemami c posledejstviem [Control for systems with aftereffect]. Moscow, Nauka, 1992. 336 p.
  3. Bellman R., Cooke K. Differential-difference equations. New York-London, Academic Press, 1963. 483 p. [Bellman R., Cooke K. Differentsial’no-raznostnye uravneniya. Moscow, Mir Publ, 1967. 548 p. ]
  4. Kolmanovskii V. B., Maizenberg T. L. Optimal’noe upravlenie stokhasticheskimi sistemami s posledejstviem [Optimal control of stochastic systems with aftereffect], Avtomatika i telemekhanika, 1973, no. 1, 47-61.
  5. Kuznetsov D. F. Stokhasticheskiedifferentsial’nykh uravneniya: teoriya I praktika chislennogo resheniya [Stochastic differental equations: Theory and practice of numerical solution]. 4th ed. Saint Petersburg, Izdatel’stvo Sankt-Peterburgskogo Polytekhnicheskogo Universiteta, 2010. XXX+786 p.
  6. Malanin V. V., Poloskov I. E. Metody i praktika analiza sluchainykh protsessov v dinamicheskikh sistemakh: ucheb. posobie [Methods and practice of analysis for random processes in dynamical systems: tutorial]. Ijevsk, Regulyarnaya i Khaoticheskaya Dinamika, 2005. 296 p.
  7. Poloskov I. E. Phase space extension in the analysis of differential-difference systems with random input, Automation and Remote Control, 2002, 63, no. 9, 1426-1438 [Rasshirenie fazovogo prostranstva v zadachakh analiza differentsial’no-raznostnykh system so slychainym vkhodom, Avtomatika i telemekhanika, 2002, no. 9, 58-73]
  8. Poloskov I. E. Ob analize nekotorykh klassov stochasticheskikh integro-differentsial’nykh uravnenii, Problemy mekhaniki i upravleniya. Nelineinye dinamicheskie sistemy: mejvuz. sb. nauch. tr. [Analysis of some classes of stochastic integro-differential equations, in: Problems of Mechanics and Control. Nonlinear Dynamical Systems: Interuniv. coll. of scient. papers], Perm Univ., Perm, 2003, 35, 99-106.
  9. Poloskov I. E. Ob odnom metode priblijennogo analiza lineinykh stochasticheskikh integro-differentsial’nykh system [On a method of approximate analysis of linear stochastic integrodifferential systems]. Differentsial’nye Uravneniya, 2005, 41, no. 9, 1276-1279.
  10. Poloskov I. E. O raschete pervykh momentov lineinykh integro-differentsial’nykh system s parametricheskimi vozmushcheniyami, Problemy mekhaniki i upravleniya. Nelineinye dinamicheskie sistemy: mejvuz. sb. nauch. tr. [On the calculation of first moments of linear integrodifferential systems with parametric perturbations, in: Problems of Mechanics and Control. Nonlinear Dynamical Systems: Interuniv. coll. of scient. papers], Perm Univ., Perm, 2006, 38, 133-142.
  11. Poloskov I. E. Stochasticheskii analiz dinamicheskikh system [Stochastic analysis of dynamic systems] [Electronic resource]: monograph. Perm, Perm Univ. Publ., 2016. 772 p.
  12. Poloskov I. E. Raschet starshykh momentov vektora sostoyanii lineinoi stochasticheskoi differentsial’noi systemy s zapazdyvaniem, vozbyjdaemoi additivnymi i mul’tiplikativnymi belymi shumami, Problemy mekhaniki i upravleniya. Nelineinye dinamicheskie sistemy: mejvuz. sb. nauch. tr. [Calculation of the senior moments for the state vector of a linear stochastic differential system with delay excited by additive and multiplicative white noises, in: Problems of Mechanics and Control. Nonlinear Dynamical Systems: Interuniv. coll. of scient. papers], Perm Univ., Perm, 2018, 50, 73-94.
  13. Rubanik V. P. Kolebaniya slojnykh kvasilinejnykh system s zapazdyvaniem [Oscillations of complex quasi-linear delay systems]. Minsk, Universitetskoe Publ., 1985. 143 p.
  14. Sokolov N. P., Vvedenie v teoriyu mnogomernykh matrits [Introduction to the theory of multidimensional matrices]. Kiev, Naukova Dumka Publ., 1972. 176 p.
  15. Tsar'kov E. F. Sluchainye vozmushcheniya differentsial'no-functsional'nykh uravnenii [Random perturbations of differential-functional equations]. Riga, Zinatne, 1989. 421 p.
  16. Shampine L. F., Gladwell I., Thompson S. Solving ODEs with Matlab, Cambridge, Cambridge University Press, 2003. 272 p. [Reshenie obyknovennykh differentsial'nykh uravnenii s ispol'zovaniem MATLAB. St. Petersburg: Lan' Publ., 2009. 304 p. ]
  17. El'sgol'ts L. E., Norkin S. B. Introduction to the theory and application of differential equations with deviating arguments, New York, Academic Press, 1973. XVI+357 p. [Vvdenie v teoriyu differentsial'nyh uravnenii s otklonyayushchimsya argumentom, Moscow, Nauka, 1971, 296 p. ]
  18. Adimy M., Crauste F., Halanay A. et al. Stability of limit cycles in a pluripotent stem cell dynamics model // Chaos, Solitons and Fractals. 2006. Vol. 27, № 4. P. 1091-1107.
  19. Banks H. T., Dediu S., Nguyen H. K. Time delay systems with distribution dependent dynamics // Annual Reviews in Control. 2007. Vol. 31, № 1. P. 17-26.
  20. Bellen A., Zennaro M. Numerical methods for delay differential equations. Oxford: Oxford University Press, 2003. XIV+395 p.
  21. Boukas El-K., Liu Zi-K. Deterministic and stochastic time delay systems. Boston: Birkhä user, 2002. XVI+423 p.
  22. Buckwar E. Introduction to the numerical analysis of stochastic delay differential equations // Journal of Computational and Applied Mathematics. 2000. Vol. 125, № 1-2. P. 297-307.
  23. Buckwar E. Euler-Maruyama and Milstein approximations for stochastic functional differential equations with distributed memory term // SFB 373 Discussion Papers: Humboldt University of Berlin, Interdisciplinary Research Project 373. 2003. № 16. 24 p.
  24. Cao Y., Cerezo G., Herdman T. L., Turi J. Singularity expansion for a class of neutral equations // Journal of Integral Equations and Applications. 2007. Vol. 19, № 1. P. 13-32.
  25. Chekroun M. D., Krö ner A., Liu H. Galerkin approximations of nonlinear optimal control problems in Hilbert spaces // Electronic Journal of Differential Equations (Texas State University). 2017. Vol. 2017 (189). P. 1-40.
  26. Chocholatý P. Integro-differential equations with time-varying delay // Programs and Algorithms of Numerical Mathematics: Proc. of Seminar / J. Chleboun, K. Segeth, J. Š í stek, and T. Vejchodský (eds. ). Prague: Institute of Mathematics AS CR, 2013. P. 51-56.
  27. Cushing J. M. Integrodifferential equations and delay models in population dynamics. Berlin, Heidelberg: Springer-Verlag, 1977. VI+198 p.
  28. Gozzi F., Marinelli C., Savin S. On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects // arXiv:math/0701580. 2008. 27 p.
  29. Hale J. K., Lunel S. M. V. Introduction to functional differential equations. New York: Springer, 1993. X+447 p.
  30. Hopkins T. Numerical solution of stochastic delay integrodifferential equations in population dynamics. Masters Thesis. Texas Tech University, 2004.
  31. Horvat V. On polynomial spline collocation methods for neutral Volterra integro-differential equations with delay arguments // Proc. of the 1th Conf. on Applied Mathematics and Computation. Dubrovnik, 1999. P. 113-128.
  32. Huang C., Vandewalle S. Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays // Frontiers of Mathematics in China. 2009. Vol. 4, № 1. P. 63-87.
  33. Kim B. M., Tsuruta K. Retarded resolvent operators for linear retarded functional differential equations in a Banach space // Japanese Journal of Mathematics. 1994. Vol. 20, № 2. P. 319-363.
  34. Kloeden P. E., Platen E., Schurz H. Numerical solution of SDE through computer experiments. Berlin: Springer, 2003. XIV, 292 p.
  35. Kolmanovskii V., Myshkis A. Applied theory of functional differential equations:Mathematics and its applications. Dordrecht: Springer, 1992. XVI+234 p.
  36. Koto T. Stability of $\theta$-methods for delay integro-differential equations // Journal of Computational and Applied Mathematics. 2003. Vol. 161, № 2. P. 393-404.
  37. Kü chler U., Platen E. Strong discrete time approximation of stochastic differential equations with time delay // Mathematics and Computers in Simulation. 2000. Vol. 54, № 1-3. P. 189-205.
  38. Kushner H. J. Numerical methods for controlled stochastic delay systems. Boston: Birkhauser, 2008. XIX+281 p.
  39. Longtin A., Milton J. G., Bos J. E., Mackey M. C. Noise and critical behavior of the pupil light reflex at oscillation onset // Physical Review A. 1990. Vol. 41, № 12. P. 6992-7005.
  40. Mangano S. Mathematica cookbook. Cambridge: O'Reilly, 2010. XXIV+800 p. Mao X. Stochastic differential equations and applications. 2nd ed. Cambridge, UK: Woodhead Publishing, 2011. XVIII+422 p.
  41. Mao X. Stochastic differential equations and applications. 2nd ed. Cambridge, UK: Woodhead Publishing, 2011. XVIII+422 p.
  42. Milstein G. N., Tretyakov M. V. Stochastic numerics for mathematical physics. Berlin: Springer, 2004. XIX+594 p.
  43. Mohammed S. E. A. Stochastic functional differential equations. Boston, London: Pitman Publishing, 1984. IX+245 p.
  44. Niu Yu., Zhang Ch., Duan J. A delay-dependent stability criterion for nonlinear stochastic delay-integro-differential equations // Acta Mathematica Scientia. 2011. Vol. 31, № 5. P. 1813-1822.
  45. Padgett W. J., Tsokos C. P. Stochastic integro-differential equations of Volterra type // SIAM Journal on Applied Mathematics. 1972. Vol. 23, № 4. P. 499-512.
  46. Poloskov I. E. Symbolic-numeric algorithms for analysis of stochastic systems with different forms of aftereffect // Proceedings in Applied Mathematics and Mechanics (PAMM). 2007. Vol. 7, № 1. P. 2080011-2080012.
  47. Poloskov I. E. Numerical and analytical methods of study of stochastic systems with delay // Journal of Mathematical Sciences. 2018. Vol. 230, № 5. P. 746-750.
  48. Poloskov I. E, Soize C. Symbolic and numeric scheme for solution of linear integro-differential equations with random parameter uncertainties and Gaussian stochastic process input // Applied Mathematical Modelling. 2018. Vol. 56, April. P. 15-31.
  49. Shaikhet L. E., Roberts J. Reliability of difference analogues to preserve stability properties of stochastic Volterra integro-differential equations // Advances in Difference Equations. 2006. Vol. 2006. Article ID 73897. P. 1-22.
  50. Shakourifar M., Enright W. H. Reliable approximate solution of systems of Volterra integro-differential equations with time-dependent delays // SIAM Journal on Scientific Computing. 2011. Vol. 33, № 3. P. 1134-1158.
  51. Soize C., Poloskov I. Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation // Computers & Mathematics with Applications. 2012. Vol. 64, № 11. P. 3594-3612.
  52. Touboul J. Propagation of chaos in neural fields // Annals of Applied Probability. 2014. Vol. 24, № 3. P. 1298-1328.
  53. Twardowska K., Marnik T., Pasł awska-Poł udniak M. Approximation of the Zakai equation in a nonlinear filtering problem with delay // International Journal of Applied Mathematics and Computer Science. 2003. Vol. 13, № 2. P. 151-160.
  54. Wang Z., Liu Y., Fraser K., Liu X. Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays // Physics Letters A. 2006. Vol. 354, № 4. P. 288-297.
  55. Wu J. Theory and applications of partial functional differential equations. New York: Springer, 1996. X+432 p.
  56. Wu Q., Hu L., Zhang Z. Convergence and stability of balanced methods for stochastic delay integro-differential equations // Applied Mathematics and Computation. 2014. Vol. 237. P. 446-460.
  57. Zhang Ch., Vandewalle S. General linear methods for Volterra integro-differential equations with memory // SIAM Journal on Scientific Computing. 2006. Vol. 27, № 6. P. 2010-2031

Full text (pdf)