ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Applying spectral form of mathematical description for representation of iterated stochastic integrals

Author(s):

Konstantin Rybakov

Moscow Aviation Institute (National Research University)

rkoffice@mail.ru

Abstract:

The article describes some aspects for applying the spectral form of mathematical description, which is used for the control systems analysis and synthesis, for the representation of iterated stochastic second multiplicity integrals with respect to the numerical solution of stochastic differential equations. It is proposed to use the spectral characteristics of the integration operator (two-dimensional nonstationary transfer functions of the integrator) defined by different orthonormal function systems: Legendre polynomials, cosines, Walsh and Haar functions, as well as the trigonometric Fourier basis.

Keywords

References:

  1. Gardiner, C.W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer-Verlag, 1997
  2. Artemiev, S.S., Averina, T.A. Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations. VSP, 1997
  3. Shiryaev, A.N. Essentials of Stochastic Finance: Facts, Models, Theory. World Scientific, 1999
  4. Oksendal, B. Stochastic Differential Equations. An Introduction with Applications. Springer-Verlag, 2000
  5. Artemiev, S.S., Marchenko, M.A., Korneev, V.D., Yakunin, M.A., Ivanov, A.A., Smirnov, D.D. Analiz stokhasticheskikh kolebanii metodom Monte-Karlo na superkomp'yuterakh [Monte Carlo Stochastic Oscillations Analysis on Supercomputers]. Novosibirsk, Siberian Branch of the Russian Academy of Sciences Publ., 2016
  6. Kuznetsov, D.F. [Stochastic Differential Equations: Theory and Practic of Numerical Solution. With MATLAB Programs]. Differencialnie Uravnenia i Protsesy Upravlenia, 2018, no. 4. (In Russ.)
  7. Rybakov, K.A. Solving the nonlinear problems of estimation for navigation data processing using continuous particle filter. Gyroscopy and Navigation, 2019, vol. 10, no. 1, pp. 27-34
  8. Mil'shtein, G.N. Chislennoe integrirovanie stokhasticheskikh differentsial'nykh uravnenii [Numerical Integration of Stochastic Differential Equations]. Sverdlovsk, Ural State University Publ., 1988
  9. Kloeden, P.E., Platen, E. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, 1995
  10. Schurz, H. Numerical analysis of stochastic differential equations without tears. Handbook of Stochastic Analysis and Applications (ed. by Lakshmikantham V., Kannan D.), pp. 237-359. Marcel Dekker, 2002
  11. Mil'stein, G.N., Tretyakov, M.V. Stochastic Numerics for Mathematical Physics. Springer-Verlag, 2004
  12. Graham, C., Talay, D. Stochastic Simulation and Monte Carlo Methods. Springer-Verlag, 2013
  13. Averina, T.A. Statisticheskoe modelirovanie reshenii stokhasticheskikh differentsial'nykh uravnenii i sistem so sluchainoi strukturoi [Statistical Modeling of Solutions of Stochastic Differential Equations and Systems with a Random Structure]. Novosibirsk, Siberian Branch of the Russian Academy of Sciences Publ., 2019
  14. Averina, T.A., Rybakov, K.A. A modification of numerical methods for stochastic differential equations with first integrals. Numer. Anal. Appl., 2019, vol. 12, no. 3, pp. 203-218
  15. Kuznetsov, D.F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full ortonormal systems]. Differencialnie Uravnenia i Protsesy Upravlenia, 1997, no. 1, pp. 18-77. (In Russ.)
  16. Kuznetsov, D.F. Multiple Ito and Stratonovich Stochastic Integrals: Fourier-Legendre and Trigonometric Expansions, Approximations, Formulas. Differencialnie Uravnenia i Protsesy Upravlenia, 2017, no. 1
  17. Mil'shtein, G.N. Approximate Integration of Stochastic Differential Equations. Theory Probab. Appl., 1975, vol. 19, no. 3, pp. 557-562
  18. Kuznetsov, D.F. New simple method for obtainment an expansion of double stochastic Ito integrals, which is based on the expansion of Brownian motion using Legendre polynomials and trigonometric functions. arXiv:1807.00409v3 [math.PR], 2019
  19. Prigarin, S.M., Belov, S.M. [One application of series expansions of Wiener process], Preprint 1107. Novosibirsk, ICM & MG Publ., 1998
  20. Solodovnikov, V.V., Semenov, V.V. Spektral'naya teoriya nestatsionarnykh sistem upravleniya [Spectral theory of nonstationary control systems]. Moscow, Nauka Publ., 1974
  21. Solodovnikov, V.V., Semenov, V.V., Peshel' M., Nedo D. Raschet sistem upravleniya na TsVM: spektral'nyi i interpolyatsionnyi metody [Design of control systems on digital computers: spectral and interpolational methods]. Moscow, Mashinostroyeniye Publ., 1979
  22. Semenov, V.V. (ed.) Tablitsy i matematicheskoe obespechenie spektral'nogo metoda teorii avtomaticheskogo upravleniya [Tables and Mathware for the Spectral Method of Control Theory], Moscow, BMSTU Publ., 1973
  23. Semenov, V.V., Rybin, V.V. Algoritmicheskoe i programmnoe obespechenie rascheta nestatsionarnykh nepreryvno-diskretnykh sistem upravleniya LA spektral'nym metodom [Algorithms and software for nonstationary discrete-continuous aircraft control systems by the spectral method]. Moscow, MAI Publ., 1984
  24. Lapin, S.V., Egupov, N.D. Teoriya matrichnykh operatorov i ee prilozhenie k zadacham avtomaticheskogo upravleniya [Theory of Matrix Operators and its Application to Problems of Automatic Control. Moscow, BMSTU Publ., 1997
  25. Rybin, V.V. Modelirovanie nestatsionarnykh nepreryvno-diskretnykh sistem upravleniya spektral'nym metodom v sistemakh komp'yuternoi matematiki [Modeling of nonstationary continuous-discrete control systems by spectral method on computers]. Moscow, MAI Publ., 2011
  26. Panteleev, A.V., Rybakov, K.A., Sotskova, I.L. Spektral'nyi metod analiza nelineinykh stokhasticheskikh sistem upravleniya [Spectral Method of Nonlinear Stochastic Control System Analysis]. Moscow, Vuzovskaya kniga, 2015
  27. Rybakov, K.A., Rybin, V.V. [Algorithms and software for calculating automated control systems in the spectral form of a mathematical description]. Sovremennaya nauka: teoreticheskie, prakticheskie i innovacionnye aspekty razvitiya [Modern science: Theoretical, practical and innovative aspects of development], vol. 2, pp. 171-199. Rostov-on-Don: Scientific Cooperation Publ., 2018. (in Russ.)
  28. Rybin, V.V. [The description and analysis of non-stationary continuous control systems in the spectral range in non-orthogonal functions. Orthorecursive approach]. Differencialnie Uravnenia i Protsesy Upravlenia, 2018, no. 4, pp. 18-40. (In Russ.)
  29. Rybakov, K.A., Rybin, V.V. [Spectral characteristics of differentiation and integration operators with respect to orthogonal finite functions. I. Symmetric splines]. Aktual'nye problemy vychislitel'noi i prikladnoi matematiki [Advanced Mathematics, Computations and Applications 2019], Novosibirsk, 2019. (In Russ.)
  30. Rybakov, K.A., Rybin, V.V. [Spectral characteristics of differentiation and integration operators with respect to orthogonal finite functions. II. Nonsymmetric splines]. Aktual'nye problemy vychislitel'noi i prikladnoi matematiki [Advanced Mathematics, Computations and Applications 2019], Novosibirsk, 2019. (In Russ.)
  31. Balakrishnan, A.V. Applied Functional Analysis. Springer-Verlag, 1981
  32. Sotskova, I.L. [Application of generalized characteristic functions to analysis of stochastic control systems for aircrafts]. Zadachi stokhasticheskogo upravleniya [Stochastic control problems], pp. 71-78. Moscow, MAI Publ., 1986. (In Russ.)
  33. Ito, K., McKean, H.P. Diffusion Processes and their Sample Paths. Springer-Verlag, 1996
  34. Zhang, Z., Karniadakis, G.E. Numerical Methods for Stochastic Partial Differential Equations with White Noise. Springer, 2017
  35. Alexits, G. Convergence problems of orthogonal series. Budapest, Akademiai Kiado, 1961
  36. Liptser, R., Shiryaev, A.N. Statistics of Random Processes. Springer, 2001
  37. Clark, J.M.C., Cameron, R.J. The maximum rate of convergence of discrete approximations for stochastic differential equations. Stochastic Differential Systems. Filtering and Control (ed. by Grigelionis B.), pp. 162-171. Springer-Verlag, 1980
  38. Levi, P. Processus Stochastiques et Mouvement Brownien, Paris, Gauthier-Villars, 1965
  39. Malham, S.J.A., Wiese, A. An introduction to SDE simulation. arXiv:1004.0646 [math.NA], 2010
  40. Kuznetsov, D.F. A comparative analysis of efficiency of using the Legendre polynomials and trigonometric functions for the numerical solution of Ito stochastic differential equations. Comput. Math. Math. Phys., 2019, vol. 59, no. 8, pp. 1236-1250
  41. Averina, T.A., Karachanskaya, E.V., Rybakov, K.A. Statistical modeling of random processes with invariants. Proc. International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk Akademgorodok, Russia, 2017, pp. 34-37
  42. Averina, T.A., Rybakov, K.A. Systems with regime switching on manifolds. Proc. 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) (STAB). Moscow, Russia, 2018, pp. 1-3

Full text (pdf)