ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

On Application of the Theory of the Controllable Dynamical Systems to Investigation of the Dynamics of Mechanical Objects in Seismically Active Zones

Author(s):

Vladimir Semionovith Metrikin

Research Institute of mechanics of
N.I. Lobachevsky National research Nizhny Novgorod state University
603950, Nizhny Novgorod, Gagarina Avenue, 23,RIM, h.6
Associate Professor, PhD in Physics and Mathematics

v.s.metrikin@mail.ru

Leonid Alekcandrovich Igumnov

Research Institute for Mechanics,
National Research Lobachevsky State University of Nizhny Novgorod,
Director of the Institute
Nizhny Novgorod, Gagarina of Prospect,23
Doctor of Physics, MD, Professor

igumnov@mech.unn.ru

Andrey Vladimirovich Metrikin

Delft University of Technology,
Faculty of Civil Engineering and Geosciences,
Delft, Building 23 Stevinweg 1, 2628 CN Delft, Netherlands
The head of the Department
Doctor of Physics, MD, Professor

andrei.metrikine@gmail.com

Abstract:

Basing on the general theory of the controllable dynamical systems (CDS), we consider vibrations of a rectangular body on a horizontal rigid surface that vibrates with a non-constant amplitude. It is assumed that the friction force between the body and the vibrating surface is sufficiently large to prevent slip and assure that the body rocks about its corner points. The energy of the body is reduced each time when it collides with the surface. This energy dissipation is accounted for by means of a restitution coefficient of the angular velocity of the body vibrations. Using the qualitative theory of the CDS and assuming that the amplitude of the surface vibrations is bounded by a known maximum amplitude, we found the controllability domains in the parameter space of the dynamical system, which assures that the body can be kept in an infinitesimal vicinity of the equilibrium. The safe controllability zone is determined as well. It is proved that the increase in the maximum amplitude leads to the shrinkage of the safe controllability zone. A parametric study of the controllability zone is conducted with the attention focused on the effects of the size of the body and the maximum acceleration of the surface.

Keywords

References:

  1. Xausner Dg. Povedenie perevernutix maetnikovix struktur vo vremya zemletryaseniya//Bulleten Seismologic. Soc. Amer. 1963. T. 53 No. 2. S. 403-417
  2. A. Xiton, T. X. Chi, B,, I Brun В. H. Ozenki uskoreniya grunta na stantzii Point-Reies vo vremia zemletriaseniya v San-Frantzisko v 1906 godu. Bulleten Seismologic. Soc. Amer. 1999, 89(4), 843-853
  3. Pena F., Prieto F., Lourenco P. B., I drugie. O dinamike kolebatelnich dvizenii odinokich zestkix konstrukzii//Zemletryaseniya inzenernix struktur Dynam. 2007. T. 36. S. 2383-2399
  4. Prieto F., Lorenso P. B. O kolebaniyax tverdogo obyekta //Mexanika. 2005. T. 40. S. 121-133
  5. Andreaus U., Kasini P. O kolebaniyax svobodnogo zostkogo bloka I pri vinuzdennix dvizeniyax: vliyanie skolzeniya I podprigivaniya // Acta Mexanika. 1999. T. 138. S. 219-241
  6. Xogan S. G. O dinamike zostkix blokov pri garmonitheskom vozdeystvii//Inzenernoe zemletryasenie. 10 mezdunarodnaya konf. 1992. Bulkema, Rotterdam ISNB 90 5410 S. 3973-3977
  7. Aslam, M., Scalise, D. T., and Godden, W. G. Raskathivanie tverdix tel pri zemlenryasenii . Zurnal Struct. Div., ASCE, 1980. 106(2), 377-392
  8. Kampillo, M., Gariel, J. C., Aki, K., and Sanchez-Sesma, F. J. Razrushitelnoe dvizenie grunta v Mexiko:istozhniki, puti I effekti vo vremya velikogo zemletryaseniya v Mitheogame 1985goda. Bull. Seismological Soc. of Am., 1989. 79(6), 1718-1735
  9. Xogan, S. J O dinamike tverdogo bloka pod deystviem garmonitheskoy sili Proc., Royal Soc., London, . 1989. A425, 441-476
  10. Xogan, S. J. Mnozestvo ustoythivix sostoyaniy zostkogo bloka J. Ing. Mech., 2001, 127(5): 473-483
  11. Xousner, G. W. Povedenie perevernutix mayatnikovix struktur vo vremya zemletryaseniy Bull. Seismological Soc. of Am., 1963. 53(2), 404-417
  12. Iwan, W. D., and Chen, X. D. Vaznie dannie dvizeniy grunta vblizi zemletryaseniya v zone Landerse. Proc., 10th Eur. Konf. Earthquake Ingrg., Balkema, Rotterdam, Niderlands. 1994
  13. Yacobsen, L. S., and Ayre, R. S. Vibrazionnaya inzineriya, McGrawHill, New York. 1958
  14. Makris, N., and Roussos, Y. Otklik kacheniya I oprokidivaniya oborudovaniya pri gorezontalnix impulsnix vozdeystviyax. Rep. No. PEER98/05, Pacific Earthquake Ingrg. Res. Ctr., University of California, Berkeley, Kalif. 1998
  15. Makris, N., and Roussos, Y Otklik zestkix blokov pri dvizenii grunta vblizi istochnika kacheniya. London, . 2000. 50(3). 243-262
  16. Pompei, A., Scalia, A., and Sumbatyan, M. A. Dinamika zestkogo bloka pod deystviem gorizontalnogo dvizeniya grunta. J. Ingrg. Mech., ASCE, 1998. 124(7), 713-717
  17. Scalia, A., and Sumbatyan, M. A. Skolzashie vrasheniya tverdix tel pod deystviem gorizontalnogo dvizeniya zemli. Earthquake Ingrg. and Struct. Dyn., 1996. 25, 1139-1149
  18. Shenton, H. W., III. Kriterii dlya iniziirovaniya rezimov skolzeniya tverdogo tela I kamnya. J. Ingrg. Mech., ASCE, 1996. 122(7), 690- 693
  19. Shi, B., Anooshehpoor, A., Zeng, Y., and Brune, J. N. Raskathivanie I oprokidivaniye neustoythivo sbolansirovannix porod pri zemletryasenii. Bull. Seismological Soc. of Amer., 1996. 86(5), 1364-1371
  20. Spanos, P. D., and Koh, A. S. Raskathivanie zestkix blokov pri garmonitheskom vozdeystvii. J. Ingrg. Mech., ASCE, 1984. 110(11), 1627-1642
  21. Tso, W. K., and Wong, C. M. Ustoythiviy zestkix blokov na kathenie. Thast 1. Analiz zemletraseniya. Ingrg. and Struct. Dyn., 1989. 18(1), 89-106
  22. Tso, W. K., and Wong, C. M. Ustoythiviy Otklik zestkix blokov na kathenie. Thast 2. Eksperiment. Earthquake Ingrg. and Struct. Dyn., 1989. 18(1), 107-120
  23. Yim, C. -S., Chopra, A. K., and Penzien, J. Outkick zestkix blokov na zemletryasenie. Earthquake Ingrg. and Struct. Dyn., 1980. 8(6), 565-587
  24. Munitdyn A., Munitdyna M. Kolebaniya zestkogo bloka na poddezivaemom osnovanii//J. VP Vibroengineeriya PROCEDIA 2016, T8, s. 63-67. ISSN2345-0533
  25. A. V. Karapetyan, M. A. Munitsyna Kolebaniya zestkogo bloka na poddezivaemom osnovanii// Avtomtika I Telemexanika, 2015, T. 76, No. 3, s. 394-404
  26. Karapetyan А. В., MunitzinaМ. А. Dinamika parallelipipeda na gorizontelno vibriruyuhey ploskosti . Avtomtika I Telemexanika, М. :Nauka, 2015, s. 32-43
  27. BaytmanМ. М. Ob oblastiyax upravlaimosti na ploskosti //Diff. uravn. 1978. Т. 14, №4. S. 579-593. 3
  28. EmelyanovС. В., KorovinС. К., NikitinС. В. Upravlaemost nelineynix system. Dvumernii sistemi//Itogi nauki I texniki. М. VNITI, 1987. Т. 21. S. 3-67
  29. Butenina N. N. Zoni immuniteta upravllaemix sistem//Diff. uravn. 1999. Т. 35, №5. S. 630-637
  30. Butenina N N., Metrikin V. S. Primenenie metodov kathestvennoy teorii upravlyaemix dinamitheskix system k issledovaniu neavtonomnix differenthialnix uravneniy// Nelineynaya dinamika, 2010, T. 6, № 1, S. 143-150

Full text (pdf)