On Application of the Theory of the Controllable Dynamical Systems to Investigation of the Dynamics of Mechanical Objects in Seismically Active Zones
Author(s):
Vladimir Semionovith Metrikin
Research Institute of mechanics of
N.I. Lobachevsky National research Nizhny Novgorod state University
603950, Nizhny Novgorod, Gagarina Avenue, 23,RIM, h.6
Associate Professor, PhD in Physics and Mathematics
v.s.metrikin@mail.ru
Leonid Alekcandrovich Igumnov
Research Institute for Mechanics,
National Research Lobachevsky State University of Nizhny Novgorod,
Director of the Institute
Nizhny Novgorod, Gagarina of Prospect,23
Doctor of Physics, MD, Professor
igumnov@mech.unn.ru
Andrey Vladimirovich Metrikin
Delft University of Technology,
Faculty of Civil Engineering and Geosciences,
Delft, Building 23 Stevinweg 1, 2628 CN Delft, Netherlands
The head of the Department
Doctor of Physics, MD, Professor
andrei.metrikine@gmail.com
Abstract:
Basing on the general theory of the controllable dynamical systems (CDS),
we consider vibrations of a rectangular body on a horizontal rigid surface
that vibrates with a non-constant amplitude. It is assumed that the friction
force between the body and the vibrating surface is sufficiently large to
prevent slip and assure that the body rocks about its corner points.
The energy of the body is reduced each time when it collides with the surface.
This energy dissipation is accounted for by means of a restitution coefficient
of the angular velocity of the body vibrations. Using the qualitative theory
of the CDS and assuming that the amplitude of the surface vibrations is bounded
by a known maximum amplitude, we found the controllability domains in the
parameter space of the dynamical system, which assures that the body
can be kept in an infinitesimal vicinity of the equilibrium.
The safe controllability zone is determined as well.
It is proved that the increase in the maximum amplitude leads to the
shrinkage of the safe controllability zone. A parametric study of the
controllability zone is conducted with the attention focused on the effects
of the size of the body and the maximum acceleration of the surface.
Keywords
- mathematical model
- point mapping
- safe zone of the controllability region
- stability
- сontrollability regions
References:
- Xausner Dg. Povedenie perevernutix maetnikovix struktur vo vremya zemletryaseniya//Bulleten Seismologic. Soc. Amer. 1963. T. 53 No. 2. S. 403-417
- A. Xiton, T. X. Chi, B,, I Brun В. H. Ozenki uskoreniya grunta na stantzii Point-Reies vo vremia zemletriaseniya v San-Frantzisko v 1906 godu. Bulleten Seismologic. Soc. Amer. 1999, 89(4), 843-853
- Pena F., Prieto F., Lourenco P. B., I drugie. O dinamike kolebatelnich dvizenii odinokich zestkix konstrukzii//Zemletryaseniya inzenernix struktur Dynam. 2007. T. 36. S. 2383-2399
- Prieto F., Lorenso P. B. O kolebaniyax tverdogo obyekta //Mexanika. 2005. T. 40. S. 121-133
- Andreaus U., Kasini P. O kolebaniyax svobodnogo zostkogo bloka I pri vinuzdennix dvizeniyax: vliyanie skolzeniya I podprigivaniya // Acta Mexanika. 1999. T. 138. S. 219-241
- Xogan S. G. O dinamike zostkix blokov pri garmonitheskom vozdeystvii//Inzenernoe zemletryasenie. 10 mezdunarodnaya konf. 1992. Bulkema, Rotterdam ISNB 90 5410 S. 3973-3977
- Aslam, M., Scalise, D. T., and Godden, W. G. Raskathivanie tverdix tel pri zemlenryasenii . Zurnal Struct. Div., ASCE, 1980. 106(2), 377-392
- Kampillo, M., Gariel, J. C., Aki, K., and Sanchez-Sesma, F. J. Razrushitelnoe dvizenie grunta v Mexiko:istozhniki, puti I effekti vo vremya velikogo zemletryaseniya v Mitheogame 1985goda. Bull. Seismological Soc. of Am., 1989. 79(6), 1718-1735
- Xogan, S. J O dinamike tverdogo bloka pod deystviem garmonitheskoy sili Proc., Royal Soc., London, . 1989. A425, 441-476
- Xogan, S. J. Mnozestvo ustoythivix sostoyaniy zostkogo bloka J. Ing. Mech., 2001, 127(5): 473-483
- Xousner, G. W. Povedenie perevernutix mayatnikovix struktur vo vremya zemletryaseniy Bull. Seismological Soc. of Am., 1963. 53(2), 404-417
- Iwan, W. D., and Chen, X. D. Vaznie dannie dvizeniy grunta vblizi zemletryaseniya v zone Landerse. Proc., 10th Eur. Konf. Earthquake Ingrg., Balkema, Rotterdam, Niderlands. 1994
- Yacobsen, L. S., and Ayre, R. S. Vibrazionnaya inzineriya, McGrawHill, New York. 1958
- Makris, N., and Roussos, Y. Otklik kacheniya I oprokidivaniya oborudovaniya pri gorezontalnix impulsnix vozdeystviyax. Rep. No. PEER98/05, Pacific Earthquake Ingrg. Res. Ctr., University of California, Berkeley, Kalif. 1998
- Makris, N., and Roussos, Y Otklik zestkix blokov pri dvizenii grunta vblizi istochnika kacheniya. London, . 2000. 50(3). 243-262
- Pompei, A., Scalia, A., and Sumbatyan, M. A. Dinamika zestkogo bloka pod deystviem gorizontalnogo dvizeniya grunta. J. Ingrg. Mech., ASCE, 1998. 124(7), 713-717
- Scalia, A., and Sumbatyan, M. A. Skolzashie vrasheniya tverdix tel pod deystviem gorizontalnogo dvizeniya zemli. Earthquake Ingrg. and Struct. Dyn., 1996. 25, 1139-1149
- Shenton, H. W., III. Kriterii dlya iniziirovaniya rezimov skolzeniya tverdogo tela I kamnya. J. Ingrg. Mech., ASCE, 1996. 122(7), 690- 693
- Shi, B., Anooshehpoor, A., Zeng, Y., and Brune, J. N. Raskathivanie I oprokidivaniye neustoythivo sbolansirovannix porod pri zemletryasenii. Bull. Seismological Soc. of Amer., 1996. 86(5), 1364-1371
- Spanos, P. D., and Koh, A. S. Raskathivanie zestkix blokov pri garmonitheskom vozdeystvii. J. Ingrg. Mech., ASCE, 1984. 110(11), 1627-1642
- Tso, W. K., and Wong, C. M. Ustoythiviy zestkix blokov na kathenie. Thast 1. Analiz zemletraseniya. Ingrg. and Struct. Dyn., 1989. 18(1), 89-106
- Tso, W. K., and Wong, C. M. Ustoythiviy Otklik zestkix blokov na kathenie. Thast 2. Eksperiment. Earthquake Ingrg. and Struct. Dyn., 1989. 18(1), 107-120
- Yim, C. -S., Chopra, A. K., and Penzien, J. Outkick zestkix blokov na zemletryasenie. Earthquake Ingrg. and Struct. Dyn., 1980. 8(6), 565-587
- Munitdyn A., Munitdyna M. Kolebaniya zestkogo bloka na poddezivaemom osnovanii//J. VP Vibroengineeriya PROCEDIA 2016, T8, s. 63-67. ISSN2345-0533
- A. V. Karapetyan, M. A. Munitsyna Kolebaniya zestkogo bloka na poddezivaemom osnovanii// Avtomtika I Telemexanika, 2015, T. 76, No. 3, s. 394-404
- Karapetyan А. В., MunitzinaМ. А. Dinamika parallelipipeda na gorizontelno vibriruyuhey ploskosti . Avtomtika I Telemexanika, М. :Nauka, 2015, s. 32-43
- BaytmanМ. М. Ob oblastiyax upravlaimosti na ploskosti //Diff. uravn. 1978. Т. 14, №4. S. 579-593. 3
- EmelyanovС. В., KorovinС. К., NikitinС. В. Upravlaemost nelineynix system. Dvumernii sistemi//Itogi nauki I texniki. М. VNITI, 1987. Т. 21. S. 3-67
- Butenina N. N. Zoni immuniteta upravllaemix sistem//Diff. uravn. 1999. Т. 35, №5. S. 630-637
- Butenina N N., Metrikin V. S. Primenenie metodov kathestvennoy teorii upravlyaemix dinamitheskix system k issledovaniu neavtonomnix differenthialnix uravneniy// Nelineynaya dinamika, 2010, T. 6, № 1, S. 143-150