On a Computer Oriented Method of the Calculation of the Spectrum of the Function Averaging
Author(s):
George Sergeevich Osipenko
Branch of Lomonosov Moscow State University in Sevastopol.
Sevastopol, st. Heroes of Sevastopol, 7
Dr. Sci. (Eng.), Professor
george.osipenko@mail.ru
Abstract:
A discrete dynamical system and a continuous function are considered.
Averaging over a periodic pseudotrajectory is the
average value of the function for the period.
The limit set of averages values over periodic pseudotrajectories
is called the spectrum of the function averaging.
It is known that the spectrum consists of segments, and each segment is generated
by a component of the chain-recurrent set.
A computer oriented method is presented that allows one to calculate the
spectrum of averaging.
The example of calculation of the Morse spectrum is considered.
Keywords
- averaging on the graph
- chain-recurrent component
- component of strong connectivity
- extreme cycles
- pseudo-trajectory
- symbolic image
References:
- Robbin J. "A structural stability theorem." Ann. Math. v. 94 (1971), no. 3, 447-493
- Robinson C. "Structural stability of C1-diffeomorphism." J. Differential Equations. v. 22 (1976), no. 1, 28-73
- Mane R. "A proof of the C1 stability conjecture." Publ. Math. Inst. Hautes Etud. Sci. v. 66 (1988), 161-610
- Osipenko G. S. Spektr usredneniya funktsii nad psevdotrayektoriyami dinamicheskoy sistemy. [The spectrum of the averaging of a function over pseudotrajectories of a dynamical system] Matematicheskiy sbornik 209 (2018):8 114-137 Sbornik: Mathematics 209:8 1211-1233. (In Russian)
- Shub M. Stabilite globale de systemes denamiques Asterisque. v. 56, 1-21. Soc. Math. France, Paris, 1978, iv+211 pp
- Osipenko G. "Symbolic Image, Hyperbolicity, and Structural Stability". J. Dynam. and Differential Equations. 15:2-3 (2003), no. 213, 427 - 450
- Osipenko G. Dynamical systems, Graphs, and Algorithms. Lectures Notes in Mathematics. v. 1889, Springer-Verlag, Berlin, Springer, 2007, xii+283 pp
- Avrutin V., Levi P., Schanz V., Fundinger D., and Osipenko G. "Investigation of dynamical systems using symbolic images: efficient implementation and applications." International J. of Bifurcation and Chaos. v. 16, no. 12 (2006), 3451-3496
- Lind Douglas, Marcus Brian. An introduction to symbolic dynamics and coding. Cambridge University Press, 1995, xvi+495 pp
- Robinson C. Dynamical Systems. Stability, Symbolic Dynamics and Chaos. Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995, xii+468 pp
- Hsu C. S. Cell-to-Cell Mapping. A method of global analysis for nonlinear systems. Appl. Math. Sci., 64, Springer-Verlag, New York, 1987, xii+352 pp
- Osipenko G. S. O simvolicheskom obraze dinamicheskoy sistemy. Krayevyye zadachi. Permskiy politekh. institut. Perm [On the symbolic image of a dynamical system. Boundary-value problems. Perm’ Polytechnical Institute, Perm’ 1983, pp. 101-105. (In Russian)
- Prasolov V. V. Elementy kombinatornoy i differentsial'noy topologii. Moskva. Izd. MTSNMO. [Elements of combinatorial and differential topology. Moscow. Ed. ICNMO]. 2004. (In Russian)
- Osipenko. G. S. "Localization of the chain recurrent set by symbolic dynamics methods." Proceedings of Dynamics Systems and Applications. V. 1 (Atlanta, GA 1993), Dynamic Publishers Inc., Atlanta, GA 1994, pp. 277-282
- Danny Fundinger. Investigating Dynamics by Multilevel Phase Space Discretization. PhD thesis. Stuttgart University. 2006
- Petrenko E. I. Komp’uternoe issledovanie dinamicheskih sistem na osnove metoda simvolicheskogo obraza. [Computer study of dynamic systems based on the symbolic image method. ] PhD thesis. Saint-Petersburg University. 2009. (In Russian)
- Tarjan R. "Depth-first search and linear graph algorithms." SIAM Journal on Computing. 1. 146-160, 1972
- Pissanetzky S. Sparse Matrix Technology. 1984, Academic Press Inc. London. xvi+336 pp
- Romanovsky I. V. Optimizacia stacionarnogo upravleniya diskretnym determinirovannym processom ["Optimization of stationary control of a discrete deterministic process."] Cybernetics. N. 2, 1967, с. 66-78
- Romanovskiy I. V. Algoritmy resheniya ekstremal'nykh zadach. Izd. Nauka. Moskva. [Algorithms for solving extremal problems. Ed. Science. Moscow. ] 1977
- Karp R. M. "A characterization of the minimum mean-cycle in a digraph." Discrete Mathematics. 23 (1978), 309-311
- Georgiadis L., Goldberg A. V., Tarjan R. E., Werneck R. F. "An experimental study of minimum mean cycle algorithms." Proc. 6th International Workshop on Algorithm Engineering and Experiments, ALENEX 2009, 1-13
- Cochet-Terrason J., Cohen G., Gaubert S., McGettrick M., Quadrat J. -P. "Numerical computation of spectral elements in max-plus algebra." IFAC Conference on System Structure and Control. July 8-10. 1998.
- Osipenko G. S., Romanovsky J. V., Ampilova N. B., and Petrenko E. I. "Computation of the Morse Spectrum." Journal of Mathematical Sciences. (N. Y. ) v. 120:2 (2004), 1155 - 1166