ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Bifurcation and Synchronization Control of Two Coupled Two-dimensional Hindmarsh-Rose Systems


Julia Vacheslavovna Raznoglazova

ITMO University
197101, St. Petersburg
Kronverkski pr.49-А

Sergei Aleksandrovich Plotnikov

Institute for Problems in Mechanical Engineering, RAS (IPME RAS)
senior researcher
199178, St. Petersburg,
Bolshoi pr.61
Lobachevski State University
603950, Nignii Novgorod
Gagarin pr. 23


In this paper we consider local bifurcations of the two-dimensional Hindmarsh-Rose system describing the dynamics of electrical activity of an individual biological neuron. The problem of synchronization control of two coupled two-dimensional Hindmarsh-Rose systems is solved. The control algorithm with known parameters of the Hindmarsh-Rose systems and the based on the speed gradient method adaptive algorithm for the systems with unknown parameters are designed.



  1. Blekhman, I. I. Sinkhronizatsiia v prirode i tekhnike[Synchronization in nature and technology]. Moscow, Nauka Publ., 1981. 352 p. [in Russian]
  2. Osipov, G. V., Kurths, J., Zhou, C. Synchronization in oscillatory networks. Berlin, Sprigner-Verlag, 2007. 370 p
  3. Glass, L. Synchronization and rhythmic processes in biology. Nature, 2001. - V. 410. - P. 277-284
  4. Pikovsky, A., Rosenblum, M., Kurths, J. Synchronization: A universal concept in nonlinear sciences. Cambridge, Cambridge University Press, 2003. - 433 p
  5. Pessenhofer, H., Kenner, T. Zur Methodik der kontinuierlichen Bestimmung der Phasenbeziehung zwischen Herzschlag und Atmung. Pflü gers Arch., 1975. - V. 355., Issue 1. - P. 77-83
  6. Fries, P. A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends Cogn. Sci., 2005. - Vol. 9, Issue 10. - P. 474-480
  7. Hammond, C., Bergman, H., Brown, P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends in Neurosciences, 2007. - Vol. 30, Issue 7. - P. 357-364
  8. Fradkov, A. L. Speed-gradient scheme and its application in adaptive control problems. Autom. Remote. Control, 1980. - V. 40, Issue 9. - P. 1333-1342
  9. Fradkov, A. L. Cybernetical Physics. From Control of Chaos to Quantum control. Berlin Heidelberg, Springer-Verlag, 2007. 236 p
  10. Selivanov, A. A., Lehnert, J., Dahms, T., Hö vel, P., Fradkov, A. L., Schö ll, E. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E, 2012. - Vol. 85. - 016201
  11. Guzenko, P. Y., Lehnert, J. Schö ll E. Application of adaptive methods to chaos control of networks of Rö ssler systems. Cybernetics and Physics, 2013. - Vol. 2. - P. 15-24
  12. Plotnikov, S. A. Control of synchronization in two delay-coupled FitzHugh-Nagumo systems with heterogeneities. IFAC Proceedings Volumes (IFAC-PapersOnLine), 2015. - Vol. 48, Issue 11. - P. 887-891
  13. Plotnikov, S. A., Lehnert, J., Fradkov, A. L., Schö ll, E. Adaptive control of synchronization in delay-coupled heterogeneous networks of FitzHugh-Nagumo nodes. Int. J. Bifur. Chaos, 2016. - Vol. 26, Issue 4. - 1650058
  14. Semenov, D. M. Synchronization control of two coupled non-identical Hindmarsh-Rose systems. UBS, 2018. - Issue 75. - P. 30-49. [In Russian]
  15. Semenov, D. M., Fradkov, A. L. Adaptive synchronization of two coupled non-identical Hindmarsh-Rose systems by the Speed Gradient method. IFAC-PapersOnLine, 2018. - Vol. 11, Issue 33. - P. 12-14
  16. Hindmarsh, J. L., Rose, R. M. A model of neuronal bursting using three coupled first order differential equations. Royal Society, 1984. - Vol. 221, Issue 1222. - P. 87-102
  17. Kolomiets, M., Shilnikov, A. Methods of qualitative theory for the Hindmarsh-Rose model. Nonlinear dynamics, 2010. - Vol. 6, Issue 1. - P. 23-52. [In Russian]
  18. Storace, M., Linaro, D., de Lange, E. The Hindmarsh-Rose neuron model: Bifurcation analysis and piecewise-linear approximations. Chaos, 2008. - Vol. 18. - 033128
  19. Tsuji, S., Ueta, T., Kawakami, H., Fujii, H., Aihara, K. Bifurcations in two-dimensional Hindmarsh-Rose type model. Int. J. Bifur. Chaos, 2007. - Vol. 17, Issue 3. - P. 985-998
  20. Hodgkin, A. L., Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journalof Physiology, 1952. - V. 117. - P. 500-544
  21. Hindmarsh, J. L., Rose, R. M. A model of the nerve impulseusing two first-order differential equations. Nature, 1982. - Vol. 296. - P. 162-164

Full text (pdf)