ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Bifurcation and Synchronization Control of Two Coupled Two-dimensional Hindmarsh-Rose Systems

Author(s):

Julia Vacheslavovna Raznoglazova

ITMO University
197101, St. Petersburg
Kronverkski pr.49-А

3janvar-julia@mail.ru

Sergei Aleksandrovich Plotnikov

Institute for Problems in Mechanical Engineering, RAS (IPME RAS)
senior researcher
199178, St. Petersburg,
Bolshoi pr.61
Lobachevski State University
researcher
603950, Nignii Novgorod
Gagarin pr. 23

waterwalf@gmail.com

Abstract:

In this paper we consider local bifurcations of the two-dimensional Hindmarsh-Rose system describing the dynamics of electrical activity of an individual biological neuron. The problem of synchronization control of two coupled two-dimensional Hindmarsh-Rose systems is solved. The control algorithm with known parameters of the Hindmarsh-Rose systems and the based on the speed gradient method adaptive algorithm for the systems with unknown parameters are designed.

Keywords

References:

  1. Blekhman, I. I. Sinkhronizatsiia v prirode i tekhnike[Synchronization in nature and technology]. Moscow, Nauka Publ., 1981. 352 p. [in Russian]
  2. Osipov, G. V., Kurths, J., Zhou, C. Synchronization in oscillatory networks. Berlin, Sprigner-Verlag, 2007. 370 p
  3. Glass, L. Synchronization and rhythmic processes in biology. Nature, 2001. - V. 410. - P. 277-284
  4. Pikovsky, A., Rosenblum, M., Kurths, J. Synchronization: A universal concept in nonlinear sciences. Cambridge, Cambridge University Press, 2003. - 433 p
  5. Pessenhofer, H., Kenner, T. Zur Methodik der kontinuierlichen Bestimmung der Phasenbeziehung zwischen Herzschlag und Atmung. Pflü gers Arch., 1975. - V. 355., Issue 1. - P. 77-83
  6. Fries, P. A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends Cogn. Sci., 2005. - Vol. 9, Issue 10. - P. 474-480
  7. Hammond, C., Bergman, H., Brown, P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends in Neurosciences, 2007. - Vol. 30, Issue 7. - P. 357-364
  8. Fradkov, A. L. Speed-gradient scheme and its application in adaptive control problems. Autom. Remote. Control, 1980. - V. 40, Issue 9. - P. 1333-1342
  9. Fradkov, A. L. Cybernetical Physics. From Control of Chaos to Quantum control. Berlin Heidelberg, Springer-Verlag, 2007. 236 p
  10. Selivanov, A. A., Lehnert, J., Dahms, T., Hö vel, P., Fradkov, A. L., Schö ll, E. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E, 2012. - Vol. 85. - 016201
  11. Guzenko, P. Y., Lehnert, J. Schö ll E. Application of adaptive methods to chaos control of networks of Rö ssler systems. Cybernetics and Physics, 2013. - Vol. 2. - P. 15-24
  12. Plotnikov, S. A. Control of synchronization in two delay-coupled FitzHugh-Nagumo systems with heterogeneities. IFAC Proceedings Volumes (IFAC-PapersOnLine), 2015. - Vol. 48, Issue 11. - P. 887-891
  13. Plotnikov, S. A., Lehnert, J., Fradkov, A. L., Schö ll, E. Adaptive control of synchronization in delay-coupled heterogeneous networks of FitzHugh-Nagumo nodes. Int. J. Bifur. Chaos, 2016. - Vol. 26, Issue 4. - 1650058
  14. Semenov, D. M. Synchronization control of two coupled non-identical Hindmarsh-Rose systems. UBS, 2018. - Issue 75. - P. 30-49. [In Russian]
  15. Semenov, D. M., Fradkov, A. L. Adaptive synchronization of two coupled non-identical Hindmarsh-Rose systems by the Speed Gradient method. IFAC-PapersOnLine, 2018. - Vol. 11, Issue 33. - P. 12-14
  16. Hindmarsh, J. L., Rose, R. M. A model of neuronal bursting using three coupled first order differential equations. Royal Society, 1984. - Vol. 221, Issue 1222. - P. 87-102
  17. Kolomiets, M., Shilnikov, A. Methods of qualitative theory for the Hindmarsh-Rose model. Nonlinear dynamics, 2010. - Vol. 6, Issue 1. - P. 23-52. [In Russian]
  18. Storace, M., Linaro, D., de Lange, E. The Hindmarsh-Rose neuron model: Bifurcation analysis and piecewise-linear approximations. Chaos, 2008. - Vol. 18. - 033128
  19. Tsuji, S., Ueta, T., Kawakami, H., Fujii, H., Aihara, K. Bifurcations in two-dimensional Hindmarsh-Rose type model. Int. J. Bifur. Chaos, 2007. - Vol. 17, Issue 3. - P. 985-998
  20. Hodgkin, A. L., Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journalof Physiology, 1952. - V. 117. - P. 500-544
  21. Hindmarsh, J. L., Rose, R. M. A model of the nerve impulseusing two first-order differential equations. Nature, 1982. - Vol. 296. - P. 162-164

Full text (pdf)