Almost Automorphic Dynamics in Almost Periodic Cocycles with One-dimensional Inertial Manifold
Author(s):
Mikhail Mikhailovich Anikushin
Postgraduate student, research engineer at the Department
of Applied Cybernetics, Faculty of Mathematics and Mechanics,
St. Petersburg State University
demolishka@gmail.com
Abstract:
We study omega-limit and minimal sets of skew-product semiflows
associated to cocycles in Banach spaces, which admit one-dimensional inertial
manifolds. Our main aim is to extend for such cocycles classical results of
W. Shen and Y. Yi on almost automorphy of minimal sets arising in the case of
scalar almost periodic ODEs and scalar almost periodic parabolic equations in
one-dimensional domains.We give applications for ODEs, delay equations and
semilinear parabolic equations.
Conditions for the existence of inertial manifolds are given in our adjacent works.
In applications, these conditions are verified with the aid of recently obtained
versions of the Frequency Theorem.
Keywords
- almost automorphic solution
- almost periodic cocycle
- frequency theorem
- inertial manifold
References:
- Alonso A. I., Obaya R., Sanz A. M. A note on non-autonomous scalar functional differential equations with small delay. C. R. Acad. Sci. Paris, Ser. I Math. 2005. Vol. 340. P. 155-160
- Anikushin M. M. Frequency theorem for the regulator problem with unbounded cost functional and its applications to nonlinear delay equations. arXiv preprint. 2021. arXiv:2003. 12499v3
- Anikushin M. M. A non-local reduction principle for cocycles in Hilbert spaces. J. Differ. Equations. 2020. Vol. 269, no. 9. P. 6699-6731
- Anikushin M. M. Geometric theory of inertial manifolds for compact cocycles in Banach spaces. arXiv preprint. 2020. arXiv:2012. 03821
- Anikushin M. M. The Poincaré -Bendixson theory for certain compact semi-flows in Banach spaces. arXiv preprint. 2020. arXiv:2001. 08627v3
- Anikushin M. M. Nonlinear semigroups for delay equations in Hilbert spaces, inertial manifolds and dimension estimates. arXiv preprint. 2021. arXiv:2004. 13141v4
- Anikushin M. M. Frequency theorem for parabolic equations and its relation to inertial manifolds theory. arXiv preprint. 2020. arXiv:2011. 12031v2
- Anikushin M. M. On the Liouville phenomenon in estimates of fractal dimensions of forced quasi-periodic oscillations. Vestn. St. Petersbg. Univ., Math. 2019. Vol. 52, no. 3. P. 234-243
- Anikushin M. M., Reitmann V., Romanov A. O. Analytical and numerical estimates of the fractal dimension of forced quasiperiodic oscillations in control systems. Differencialnie Uravnenia i Protsesy Upravlenia. no. 2, 2019, 162-183, https://diffjournal.spbu.ru/pdf/anikushin2.pdf (In Russ. )
- Anikushin M. M. On the Smith reduction theorem for almost periodic ODEs satisfying the squeezing property. Rus. J. Nonlin. Dyn. Vol. 15, no. 1, P. 97-108
- Bá tkai A., Piazzera S. Semigroups for Delay Equations. A K Peters, Wellesley, 2005
- Cheban D. N. Nonautonomous Dynamics: Nonlinear oscillations and Global attractors. Springer Nature, 2019
- Chicone C. Inertial and slow manifolds for delay equations with small delays. J. Differ. Equations. 2003. Vol 190, no. 2. P. 364-406
- Chueshov I. D. Dynamics of Quasi-stable Dissipative Systems. Berlin: Springer, 2015
- Engel K. -J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. Springer-Verlag, 2000
- Fabbri R., Johnson R., Nú ñ ez C. On the Yakubovich Frequency Theorem for linear non-autonomous control processes. Discrete & Continuous Dynamical Systems-A. 2003. Vol. 9, no. 3. P. 677-704
- Feudel U., Kuznetsov S., Pikovsky A., Strange Nonchaotic Attractors: Dynamics between Order and Chaos in Quasiperiodically Forced Systems. World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 56, Hackensack, N. J. : World Sci., 2006
- Glendinning P., Jä ger T. H., Keller G., How chaotic are strange non-chaotic attractors?. Nonlinearity. 2006. Vol. 19, no. 9. P. 2005-2022
- Hale J. K. Theory of Functional Differential Equations. Springer-Verlag, 1977
- Hartman P. Ordinary Differential Equations. Birk-hauser, Boston, 1982
- Henry D. Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, 1981
- Jorba À., Tatjer J. C., Nú ñ ez C., Obaya, R. Old and new results on strange nonchaotic attractors. Int. J. Bifurcat. Chaos. 2007. Vol. 17, no. 11. P. 3895-3928
- Kalinin Yu. N., Reitmann V. Almost periodic solutions in control systems with monotone nonlinearities. Differencialnie Uravnenia i Protsesy Upravlenia. 2012. Vol. 61, no. 4
- Kuznetsov N. V., Reitmann V. Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Switzerland: Springer International Publishing AG, 2021
- Levitan B. M., Zhikov V. V. Almost Periodic Functions and Differential Equations. CUP Archive, 1982
- Likhtarnikov A. L., Yakubovich V. A. The frequency theorem for continuous one-parameter semigroups. Math. USSR-Izv. 1977. Vol. 41, no. 4. P. 895-911. (In Russ. )
- Likhtarnikov A. L., Yakubovich V. A. The frequency theorem for equations of evolutionary type. Sib. Math. J. 1976. Vol. 17, no. 5. P. 790-803
- Lindner J. F., Kohar V., Kia B., Hippke M., Learned J. G., Ditto W. L. Strange nonchaotic stars. Physical review letters. 2015. Vol. 114, no. 5
- Massera J. L. The existence of periodic solutions of systems of differential equations. Duke Math. J. 1950. Vol. 17, no. 4. P. 457-475
- Nú ñ ez C., Obaya R., Sanz A. M. Minimal sets in monotone and concave skew-product semiflows I: A general theory. J. Differ. Equations. 2012. Vol. 252, no. 10. P. 5492-5517
- Pankov A. A. Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations. Kluwer Academic Publishers, London, 1990
- Shen W., and Yi Y. Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows. American Mathematical Soc., 1998
- Suresh K., Prasad A., Thamilmaran K. Birth of Strange Nonchaotic Attractors through Formation and Merging of Bubbles in a Quasiperiodically Forced Chua's Oscillator. Phys. Lett. A. 2013. Vol. 377, no. 8. P. 612-621
- Smith R. A. Orbital stability and inertial manifolds for certain reaction diffusion systems. Proc. Lond. Math. Soc. 1994. Vol. 3, no. 1. P. 91-120
- Smith R. A. Poincaré -Bendixson theory for certain reaction-diffusion boundary-value problems. Proc. Roy. Soc. Edinburgh Sect. A. 1994. Vol. 124, no. 1. P. 33-69
- Smith R. A. Convergence theorems for periodic retarded functional differential equations. Proc. Lond. Math. Soc. 1990. Vol. 3, no. 3. P. 581-608
- Smith R. A. Massera’s convergence theorem for periodic nonlinear differential equations. J. Math. Anal. Appl. 1986. Vol. 120, no. 2. P. 679-708
- Yakubovich V. A. Method of matrix unequalities in theory of nonlinear control systems stability. I. Forced oscillations absolute stability. Avtomat. i Telemekh. 1964. Vol. 25, no. 7. P. 1017-1029
- Yi Y. On almost automorphic oscillations. Fields Inst. Commun. 2004. Vol. 42. P. 75-99