ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Mathematical Model and Numerical Scheme for Calculation of Electric Fields in Galvanic Baths with Non-conductive Screen

Author(s):

Irina Yu. Pchelintseva

Tambov State Technical University
Tambov
Postgraduate student of the Department of Automated Decision Support Systems
ul. Sovetskaya 106, 392000, Tambov, Russian Federation

irina_yu_10@mail.ru

Yuriy V. Litovka

Tambov State Technical University
Tambov
Doctor of Technical Sciences, Professor
Professor of the Department of Automated Decision Support Systems
ul. Sovetskaya 106, 392000, Tambov, Russian Federation

polychem@list.ru

Abstract:

A mathematical model of the electric field in a electroplating bath with a flat anode and cathode, which has an infinitely thin flat insulator wall with transverse slots, is considered. Such a non-conductive screen is necessary for a more uniform coverage of the cathode detail. In this article, a transition is made to the difference analogue of the problem. A numerical method based on Newton's method for solving nonlinear algebraic equations is described, a computational experiment for 4 slits is carried out. The obtained results show the effectiveness of the applied numerical method.

Keywords

References:

  1. Dutov, A. V., Sypalo, K. I., Solovjev, D. S., Litovka, Y. V., Solovjeva, I. A., Nesterov, V. A. Search for the optimal control over current regimes in electroplating processes with multi anodes at a diversified assortment of treated articles // Journal of Computer and Systems Sciences International, 2019, vol. 58, no. 1, pp. 75-85
  2. Litovka, Yu. V., Mikheev, V. V. Numerical calculation of the electric field in an electroplating bath with bipolar electrodes // Theoretical Foundations of Chemical Engineering, 2006, vol. 40, no. 3, pp. 305-310
  3. Demidovich, B. P., Maron, I. A. Osnovy vychislitel'noy matematiki [Fundamentals of Computational Mathematics], Lan' Publ., St. Petersburg, 2006, 672 p
  4. Pchelintseva, I. Yu., Pchelintsev, A. N., Litovka, Yu. V. Modeling of metal distribution when coating flat metal plates in electroplating baths // International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, vol. 34, iss. 2, e2830, 10 pp
  5. Kudryavtsev, N. T. Elektroliticheskiye pokrytiya metallami [Electrolytic Coating with Metals], Khimiya Publ., Moscow, 1979, 352 p
  6. Zhuk, N. P. Kurs teorii korrozii i zashchity metallov [Corrosion and Metal Protection Theory Course]. Al'yans, Moscow, 2014, 472 p
  7. Tolmachev, A. V., Konovalov, A. V., Partin, A. S. Effektivnost' algoritma LU-razlozheniya s dvukhmernym tsiklicheskim raspredeleniyem matritsy dlya parallel'nogo resheniya uprugoplasticheskoy zadachi [Efficiency of LU-decomposition algorithm with two-dimensional cyclic matrix distribution for parallel solution of elastoplastic problem] // Programmnyye produkty i sistemy, 2013, no. 3, pp. 94-99
  8. Maxima computer algebra system, http://maxima.sourceforge.net/ru/
  9. Pchelintseva, I. Yu., Pchelintsev, A. N., Litovka, Yu. V. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM №2020614929. Chislennoye resheniye uravneniya Laplasa dlya raschota raspredeleniya elektricheskogo potentsiala v gal'vanicheskoy vanne na baze matematicheskogo paketa Maxima [Certificate of state registration of the computer program No. 2020614929. Numerical solution of the Laplace equation for calculating the distribution of electric potential in a galvanic bath based on the mathematical package Maxima]. - 04/29/2020

Full text (pdf)