ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Orthogonal Expansion of Multiple Ito Stochastic Integrals

Author(s):

Konstantin Alexandrovich Rybakov

Moscow Aviation Institute (National Research University)

rkoffice@mail.ru

Abstract:

Based on the properties of Hermite polynomials, which are orthogonal with respect to the probability density of the normal distribution, and Charlier polynomials, which are orthogonal with respect to the Poisson distribution, a representation of multiple Ito stochastic integrals by Wiener and Poisson processes in the form of orthogonal series is proposed.

Keywords

References:

  1. Ito, K. Multiple Wiener integral. Journal of the Mathematical Society of Japan, 1951, vol. 3, no. 1, pp. 157-169
  2. Hida, T., Ikeda, N. Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral. Proc. 5th Berkeley Symp. on Math. Stat. and Prob. 1967, vol. II, part 1, pp. 117-143
  3. Hu, Y. -Z., Meyer, P. -A. Sur les integrales multiples de Stratonovitch. Seminaire de probabilites, 1988, vol. 22, pp. 72-81
  4. Budhiraja, A. S. Multiple stochastic integrals and Hilbert space valued traces with applications to asymptotic statistics and non-linear filtering. Ph. D. Diss., The University of North Carolina, Chapel Hill, 1994
  5. Delgado, R. Multiple Ogawa, Stratonovich and Skorohod anticipating integrals. Stochastic Analysis and Applications, 1998, vol. 16, no. 5, pp. 859-872
  6. Farre, M., Jolis, M., Utzet, F. Multiple Stratonovich integral and Hu-Meyer formula for Levy processes. The Annals of Probability, 2010, vol. 38, no. 6, pp. 2136-2169
  7. Milstein, G. N. Numerical Integration of Stochastic Differential Equations. Kluwer Academic Publ., 1995
  8. Kloeden, P. E., Platen, E. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, 1995
  9. Averina, T. A. Statisticheskoe modelirovanie reshenii stokhasticheskikh differentsial’nykh uravnenii i sistem so sluchainoi strukturoi [Statistical Modeling of Solutions of Stochastic Differential Equations and Systems with a Random Structure]. Novosibirsk, Siberian Branch of the Russian Academy of Sciences Publ., 2019
  10. Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automation and Remote Control, 2018, vol. 79, no. 7, pp. 1240-1254
  11. Kuznetsov, D. F. On numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automation and Remote Control, 2019, vol. 80, no. 5, pp. 867-881
  12. Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 4, pp. A. 1-A. 606
  13. Rybakov, K. A. Applying spectral form of mathematical description for representation of iterated stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 4, pp. 1-31. (In Russ. )
  14. Rybakov, K. A. Using spectral form of mathematical description to represent Stratonovich iterated stochastic integrals. Smart Innovation, Systems and Technologies, vol. 217, pp. 287-304. Singapore, Springer, 2021
  15. Rybakov, K. A. Application of Walsh series to represent Stratonovich iterated stochastic integrals. IOP Conference Series: Materials Science and Engineering, 2020, vol. 927, id 012080
  16. Balakrishnan, A. V. Applied Functional Analysis. Springer-Verlag, 1981
  17. Gikhman, I. I., Skorokhod, A. V. Introduction to the Theory of Random Processes. Dover Publ., 1997
  18. Bateman, H., Erdelyi, A. Higher Transcendental Functions, vol. 2. McGraw-Hill Book Company, 1953
  19. Dobrushin, R. L., Minlos, R. A. Polynomials in linear random functions. Russian Mathematical Surveys, 1977, vol. 32, no. 2, pp. 71-127
  20. Pugachev, V. S., Sinitsyn, I. N. Stochastic Systems: Theory and Applications. World Scientific, 2002

Full text (pdf)