Mathematical Aspects of Condition of MIMO-system Invariance to Disturbances in Control Channels
Author(s):
Nikolay Evgenievich Zubov
Doctor of Technical Sciences, Professor, Professor of Department of Automatic Control Systems,
Dean of Rocket and Space Techniques Faculty at Bauman Moscow State Technical University (Bauman MSTU),
Professor of Postgraduate Studies at S.P. Korolev Rocket and Space Corporation "Energia" (S.P. Korolev RSC "Energia")
Nik.Zubov@gmail.com
Vladimir Nikolaevich Ryabchenko
Doctor of Technical Sciences, Associate Professor, Professor of Department of Automatic Control Systems
at Bauman Moscow State Technical University (Bauman MSTU)
RyabchenkoVN@yandex.ru
Alexey Vladimirovich Lapin
Candidate of Technical Sciences, Associate Professor of Department of Automatic Control Systems
at Bauman Moscow State Technical University (Bauman MSTU), 2nd category engineer
at State Research Institute of Aviation Systems (GosNIIAS)
AlexeyPoeme@yandex.ru
Abstract:
This paper presents constructive conditions of invariance of linear dynamic system with multi inputs and multi outputs
(MIMO-system) to disturbances in control channels. The approach to invariant control synthesis consists in searching
such matrix of feedback coefficients of linear system that fulfills invariance conditions represented by a system of
polynomial matrix equations of a certain structure. We obtain these conditions basing on the solution of symmetric
matrix equation regularization task.
Theorems with proofs and illustrative examples are demonstrated for mathematic approach to analytic synthesis of
invariant system with multi inputs and multi outputs (MIMO-system) as well as for numeric synthesis of a single-rotor
helicopter spatial motion control system. In the numeric example the mathematic statement of control task has allowed
to organize "insensitivity" of roll and pitch angles to disturbances in control channels, providing at the same time
stability of general motion of the flying vehicle.
Keywords
- disturbance in control channel
- exact pole placement
- invariant control
- Morse injection
- single-rotor helicopter
References:
- Schipanov, G. V. Teoriya i metody proektirovaniya avtomaticheskikh regulatorov [Theory and methods of designing automatic regulators]. Avtomat. I Telemekh., iss. 1, p. 49-66, 1939. (In Russian)
- Schipanov, G. V. Giroskopicheskie pribory slepogo poleta [Gyroscopic devices for blind flight]. Moscow, Oborongiz, 1938, 116 p. (In Russian)
- Schipanov G. V. i teoriya invariantnosti (trudy i dokumenty) [Schipanov G. V. and invariance theory (works and documents)]: Origin. Lezina, Z. M., and Lezin, V. I. Moscow, Fizmatlit, 2004
- Uonem, M. Linejnye mnogomernye sistemy upravleniya: geometricheskii podkhod [Linear multidimensional control systems: the geometrical approach]. Moscow, Nauka Publ., 1980, 376 p. (In Russian)
- Chen, H. L. General Decoupling Theory of Multivariable Process Control Systems. Springer-Verlag, 1983
- Dion, J. M., and Commault C. Feedback Decoupling of Structured Systems. IEEE Trans. on Automat. Contr., vol. 38, iss. 7, p. 1132-1135, 1993. DOI: 10. 1109/9. 231471
- Van der Woude, J. W., and Murota K. Disturbance Decoupling with Pole Placement for Structured Systems: A Graph-Theoretic Approach. SIAM J. on Matr. Anal. and Appl., vol. 16, iss. 3, p. 922-942, 1995. DOI: 10. 1137/S0895479893251344
- Wang, Q. G. Decoupling Control. Springer-Verlag, 2003
- Misrikhanov, M. Sh. Invariantnoe upravlenie mnogomernymi sistemami: algebraicheskii podkhod [Invariant control of multidimensional systems: the algebraic approach]. Мoscow, |Nauka Publ., 2007, 284 p. (In Russian)
- Zubov, N. E., Mikrin, E. A., Misrikhanov, M. Sh., and Ryabchenko V. N. Invariance Conditions for MIMO-Systems Based on Regularization. Doklady Mathematics, vol. 92, iss. 3, p. 554-666, 2015. DOI: 10. 1134/S106456241506006X
- Morse, A. S. Structural Invariants of Linear Multivariable Systems. SIAM J. Control Optim., vol. 11, iss. 3, p. 446-465, 1973. DOI: 10. 1137/0311037
- Bukov, V. N., Goryunov, S. V., and Ryabchenko, V. N. Matrix Linear Systems: A Comparative Review of the Approachesto their Analysis and Synthesis. Autom. Remote Control, vol. 61, iss. 11, part 1, p. 1759-1795, 2000
- Misrikhanov, M. Sh., and Ryabchenko, V. N. Pole Placement for Controlling a Large Scale Power System. Autom. Remote Control, vol. 72, iss. 10, p. 2123-2146, 2011. DOI: 10. 1134/S0005117911100110
- Zubov, N. E., Mikrin, E. A., Oleynik, A. S., Ryabchenko, V. N., and Efanov, D. E. Otsenka uglovoy skorosti kosmicheskogo apparata v regime orbital’noy stabilizatsii po rezul’tatam izmereniy datchika mestnoy vertikali [The spacecraft angular velocity estimation in the orbital stabilization mode by the results of the local vertical sensor measurements]. Herald of Bauman MSTU, Series Instrument Engineering, iss. 5, p. 3-15, 2014. (In Russian)
- Zubov, N. E., Mikrin, E. A., Ryabchenko V. N., and Proletarskii, A. V. Analytical Synthesis of Control Laws for Lateral Motion of Aircraft. Russian Aeronautics, vol. 58, iss. 3, p. 263-270, 2015. DOI: 10. 3103/S1068799815030034
- Zubov, N. E., Mikrin, E. A., and Ryabchenko, V. N. Matrichnye metody v teorii i praktike sistem avtomaticheskogo upravleniya letatel’nykh apparatov [Matrix methods in theory and practice of flying vehicles automatic control systems]. Moscow, Bauman MSTU Publ., 2016, 666 p. (In Russian)
- Gadjiev, M. G., Misrikhanov, M. Sh., Ryabchenko, V. N., and Sharov Yu. V. Matrichnye metody analiza I upravleniya perekhodnymi protsessami v electroenergeticheskikh sistemakh [Matrix methods of analysis and control of transients in electric power systems]. Moscow, MPEI Publ. House, 2019. (In Russian)