ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Research of Parametric Interpolation Approaches for Smoothing a Piecewise Linear Toolpath

Author(s):

Alexander Alexandrovich Zelensky

Candidate of Technical Sciences, Associate Professor,
Director of the Institute of Digital Intelligent Systems,
Moscow State University of Technology "STANKIN"

zelenskyaa@gmail.com

Tagir Khabibovich Abdullin

leading engineer, lecturer of the Department of
“Industrial Electronics and Intelligent Digital Systems",
Moscow State University of Technology "STANKIN"

everestultimate@yandex.ru

Vadim Viktorovich Dubovskov

leading engineer, lecturer of the Department of
“Industrial Electronics and Intelligent Digital Systems",
Moscow State University of Technology "STANKIN"

dtnt1121@gmail.com

Yuri Vladimirovich Ilyukhin

Doctor of Technical Sciences,
Professor of the Department of Robotics and Mechatronics,
Moscow State Technical University "STANKIN"

ilyv-2@mail.ru

Abstract:

The paper considers the basic methods of parametric interpolation of tool trajectory during contour machining of products having complex geometric surface shape. The paper applies an approach based on inserting cubic B-splines into the initial piecewise linear trajectory and implementing linear and parametric interpolation algorithms which allow increasing machining productivity. When there is no explicit analytical dependence spline parameters on its length of the corresponding trajectory segment parametric interpolation is performed. Therefore, numerical methods are used for formation of interpolated points along the curve, which have different accuracy of approximation of the spline parameter and have a significant impact on the quality of machining of the product due to the unstable feed rate. A number of numerical experiments have been conducted to select the most effective parametric interpolation algorithm for a trajectory that has a geometric continuity of G2. The best results are shown by the second-order Runge-Kutta algorithm with a compensating approximation scheme, which is the best choice for control systems of machine tools and industrial robots for high-precision and high-speed machining of parts with complex geometries.

Keywords

References:

  1. Brecher С., Lange S., Merz M., Niehaus F., Wenzel C., Winterschladen M. NURBS based ultra-precision free-form machining. CIRP Annals. 2006. Vol. 55 (1). P. 547-550
  2. U. S. Product Data Association. Initial Graphics Exchange Specification. 1996. IGES 5. 3
  3. Pratt. M. J. Introduction to ISO 10303-the STEP standard for product data exchange. Journal of Computing and Information Science in Engineering. 2001. Vol. 1. no. 1. P. 102-103
  4. Zhong W. B., Luo X. C., Chang W. L., Cai Y. K., Ding F., Liu H. T., Sun Y. Z. Toolpath Interpolation and Smoothing for Computer Numerical Control Machining of Freeform Surfaces: A Review. International Journal of Automation and Computing. February 2020. Vol. 17(1). P. 1-16
  5. Abdullin T. Kh., Kharkiv M. A. A look-ahead algorithm for a CNC system using trapezoidal acceleration/deceleration laws. “Mashinovedenie i innovacii. Konferenciya molodyh uchyonyh i studentov”. 2017. December 6-8
  6. Zhong W. B., Luo X., Chang W., Ding F., Cai Y. A real-time interpolator for parametric curves. International Journal of Machine Tools and Manufacture. 2018. Vol. 125. P. 133-145
  7. Ernesto C., Farouki R. T. A. High-speed cornering by CNC machines under prescribed bounds on axis accelerations and toolpath contour error. The International Journal of Advanced Manufacturing Technology. 2012. Vol. 58. P. 327-338
  8. Yeh S-S., Hsu P-L. Adaptive-feedrate interpolation for parametric curves with a confined chord error. Computer-Aided Design. 2002. Vol. 34(3). P. 229-237
  9. Nam S-H., Yang M-Y. A study on a generalized parametric interpolator with real-time jerk-limited acceleration. Computer-Aided Design. 2004. Vol. 36. P. 27-36
  10. Zhao H., Zhu LM., Ding H. A real-time look-ahead interpolation methodology with curvature-continuous B-spline transition scheme for CNC machining of short line segments. International Journal of Machine Tools & Manufacture. 2013. Vol. 65. P. 88-98
  11. Beudaert X., Lavernhe S., Tournier C. 5-axis local corner rounding of linear tool path discontinuities. International Journal of Machine Tools & Manufacture. 2013. Vol. 73. P. 9-16
  12. Zarudnev A. S., Ilyukhin Y. V. Performance improvement of mechatronic laser processing complexes based on the dependence of the contour error on the parameters of motion and actuator systems. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2007. Vol. 9. No 3 (21). P. 758 - 764
  13. Zarudnev A. S., Ilyukhin Yu. V. Improving the performance of laser complexes based on contour error prediction. Izd-vo «Novye tekhnologii», M. : Mekhatronika, avtomatizaciya, upravlenie. 2010. No. 9. P. 52-56
  14. Huang J., Du X., Zhu L-M. Real-time local smoothing for five-axis linear toolpath considering smoothing error constraints. International Journal of Machine Tools and Manufacture. 2018. Vol. 124. P. 67-79
  15. Bi Q-Z., Wang Y-H., Zhu L-M., Ding H. A Practical Continuous-Curvature Bezier Transition Algorithm for High-Speed Machining of Linear Tool Path. Intelligent Robotics and Applications: 4th International Conference, ICIRA, Aachen, Germany. December 6-8, 2011, Proceedings, Part II. P. 465-476
  16. Fan W., Lee C-H., Chen J-H. A real-time curvature-smooth interpolation scheme and motion planning for CNC machining of short line segments. International Journal of Machine Tools and Manufacture. 2015. Vol. 96. P. 27-46
  17. Farouki R. T. Construction of G2 rounded corners with Pythagorean-hodograph curves. Computer Aided Geometric Design. 2014. Vol. 31. P. 127-139
  18. Wang J. B., Yau H. T. Real-time NURBS interpolator: application to short linear segments. The International Journal of Advanced Manufacturing Technology. 2009. Vol. 41 P. 1169-1185
  19. SIEMENS. SINUMERIK 840D sl/828D Basic Functions Function Manual. [Electronic resource]. - Access mode: https://cache.industry.siemens.com/dl/files/797/109760797/att_962387/v1/840Dsl_828D_basic_fct_man_0818_en-US.pdf , free. - (accessed 30. 06. 2020)
  20. FANUC Series 30i/31i/32i/35i-MODEL B. [Electronic resource]. - Access mode: https://www.fanuc.co.jp/en/product/catalog/pdf/cnc/FS30i-B(E )-09a. pdf, free. - (accessed 30. 06. 2020)
  21. Chen Z. C., Khan M. A. Piecewise B-Spline Tool Paths With the Arc-Length Parameter and Their Application on High Feed, Accurate CNC Milling of Free-Form Profiies. Journal of Manufacturing Science and Engineering. 2012. Vol. 134 (3)
  22. A Primer on Bé zier Curves. [Electronic resource]. - Access mode: https://pomax.github.io/bezierinfo/ru-RU/index.html , free. - (accessed 15. 06. 2020)
  23. Zelensky, A. A., Abdullin T. Kh., Ilyukhin Yu. V., Kharkov M. A. High-performance digital FPGA-based system for motion control of multi-coordinate machines and industrial robots. 2019. " STIN" (STanki INstrument). No 8. P. 5-8
  24. Zelensky, A. A. Kharkov M. A., Ivanovsky S. P., Abdullin T. Kh. High-performance system of numerical program control based on programmable logic integrated circuits. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. Vol. 14. No 5. P. 8-12
  25. Zelensky, A. A., Shadrin N. G., Abdullin T. Kh., Kharkiv M. A. High-speed industrial real-time network of cyberphysical systems. Vestnik komp'yuternyh i informacionnyh tekhnologij. 2019. No 11. P. 46-52
  26. Yuen A. Spline interpolation and contour error pre-compensation for 5-axis machining. Dissertation. [Electronic resource]. - Access mode: https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0073966 , free. - (accessed 20. 08. 2020)
  27. Koren Y., Lo C. C., Shpitalni M. CNC interpolators: Algorithms and analysis. Manufacturing Science and Engineering. Manufacturing Science and Engineering. 1993. Vol. 64. P. 83-92
  28. Bhattacharjee. B., Azeem A., Ali S., Paul S. Development of a CNC interpolation scheme for CNC controller based on Runge-Kutta method. International Journal Computer Aided Engineering and Technology. 2012. Vol. 4. No 5. P. 445-464
  29. Cheng M-Y., Cheng M-Y., Tsai M-C., Kuob J-C. Real-time NURBS command generators for CNC servo controllers. International Journal of Machine Tools and Manufacture. 2002. Vol. 42. P. 801-813
  30. Zhao H., Zhu L., Ding H. A parametric interpolator with minimal feed fluctuation for CNC machine tools using arc-length compensation and feedback correction. International Journal of Machine Tools & Manufacture. 2013. Vol. 75. P. 1-8
  31. Tsai M. C., Cheng C. W. A real-time predictor-corrector interpolator for CNC machining. Transactions of ASME Journal of Manufacturing Science and Engineering. 2003. Vol. 125. P. 449-460
  32. Heng M., Erkorkmaz K. Design of a NURBS interpolator with minimal feed fluctuation and continuous feed modulation capability. International Journal of Machine Tools and Manufacture. 2011. Vol. 50. P. 281-293
  33. Zhang L. B., You Y. P., He J., Yang X. F. The transition algorithm based on parametric spline curve for high-speed machining of continuous short line segments. The International Journal of Advanced Manufacturing Technology. 2011. Vol. 52. P. 245-254
  34. Zelenski, A. A., Abdullin T. Kh., Alepko A. V. Real-time features of s-shaped acceleration/deceleration curve construction during piecewise linear interpolation of surfaces of complex shape. Robototekhnika i tekhnicheskaya kibernetika. 2021. Vol. 9. No 3. P. 186-195
  35. Farouki R. T., Sakkalis T. Real rational curves are not unit speed. Computer Aided Geometric Design. 1991. Vol. 8. P. 151-157
  36. Jia Z-Y., Song D-N., Ma J-W., Hu G-Q., Su W-W. A NURBS interpolator with constant speed at feedrate-sensitive regions under drive and contour-error constraints. International Journal of Machine Tools and Manufacture. 2017. Vol. 116. P. 1-17

Full text (pdf)