ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Analysis of Stationary Solutions of One-dimensional Models of Hemodynamics

Author(s):

Gerasim Vladimirovich Krivovichev

Saint-Petersburg State University,
Faculty of Applied Mathematics and Control Processes,
Assoc. Professor, Candidate of sc.
199034, Russia, Saint-Petersburg, Universitetskaya nab. 7/9;

g.krivovichev@spbu.ru

Nikolay Vasil'evich Egorov

Saint-Petersburg State University,
Faculty of Applied Mathematics and Control Processes
Full Professor,Doctor of Sc.
199034, Russia, Saint-Petersburg, Universitetskaya nab. 7/9;

n.v.egorov@spbu.ru

Abstract:

In last years, one-dimensional (1D) models of hemodynamics are widely used for the diagnostics of cardiovascular diseases, surgical operations, and for the analysis of the vascular pathologies effects. Models of this type are constructed by the averaging of the equations of the hydrodynamics of a viscous incompressible fluid on the vessel cross-section, taking some simplifications into account. The paper presents 1D models of blood flow, where the non-Newtonian properties of blood are considered. For the construction of models, the rheological relations for generalized Newtonian fluids are used. The following models, applied in 2D and 3D simulations are considered: the power law model, the Carreau, Carreau --- Yasuda and Cross models, the simplified Cross model, the Yeleswarapu model, and Quemada and the modified Yeleswarapu models, which are dependent on hematocrit. For the closure of models, a model power-law representation of the dimensionless velocity profile is used. The parameter of this dependence is varied during the calculations. The steady flow regime leads to the consideration of the nonlinear ordinary differential equation on the cross-sectional area. For the power law model, the simplified Cross model, and the Quemada model, integrals of this equation are obtained. Conditions for the existence and uniqueness of the solution of the initial problem are obtained. During the calculations, the parameters for the iliac artery are considered. The influence of the velocity profile and hematocrit on the obtained solutions is investigated. It is shown, that the flattening of the velocity profile leads to a decrease in the length of the interval, where the stationary solutions exist. A similar situation occurs with an increase of hematocrit. The case of a vessel with stenosis, with the shape described by a model function, is considered. It is shown that a change in the geometric parameters affects the length of the interval of existence of the solution. The solutions obtained can be useful for the comparison of different 1D models of blood as a viscous fluid and for testing programs that implement algorithms of numerical methods.

Keywords

References:

  1. Formaggia L., Lamponi D., Quarteroni A. One-dimensional models for blood flow in arteries // Journal of Engineering Mathematics, 2003, vol. 251. P. 251-276
  2. Quarteroni A., Manzoni A., Vergara C. The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications // Acta Numerica. 2017, vol. 26. P. 365-590
  3. Toro E. F. Brain venous haemodynamics, neurological diseases and mathematical modelling: a review // Applied Mathematics and Computation, 2015, vol. 272. P. 542-579
  4. Audebert C., Bucur C., Bekheit M., Vibert E., Vignon-Clementel I., Gerbeau J. Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling // Computer Methods in Applied Mechanics and Engineering, 2017, vol. 314. P. 102-125
  5. Marchandise E., Willemet M., Lacroix V. A numerical hemodynamic tool for predictive vascular surgery // Medical Engineering and Physics, 2009, vol. 31. P. 131-144
  6. Xiao N., Alastruey J., Figueroa C. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models // International Journal for Numerical Methods in Biomedical Engineering. 2014, vol. 30. P. 203-231
  7. Dobroserdova T., Liang F., Panasenko G., Vassilevski Y. Multiscale models of blood flow in the compliant aortic bifurcation // Applied Mathematics Letters. 2019, vol. 93. P. 98-104
  8. Caro C. G., Pedley T. J., Schroter R. C., Seed W. A. The mechanics of the circulation. Cambridge: Cambridge University Press, 2011. 524 p
  9. Cho Y. I., Kensey K. R. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows // Biorheology, 1991, vol. 28. P. 241-262
  10. Marcinkowska-Gapinska A., Gapinski J., Elikowski W., Jaroszyk F., Kubisz L. Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients // Medical and Biological Engineering and Computing, 2007, vol. 45. P. 837-844
  11. Charm S., Kurland G. Viscometry of human blood for shear rates of 0-100, 000 sec-1 // Nature, 1965, vol. 206. P. 617-618
  12. Thurston G. Viscoelasticity of human blood // Biophysical Journal, 1972, vol. 12. P. 1205-1217
  13. Huang C., Siskovic N., Robertson R., Fabisiak W., Smitherberg E., Copley A. Quantitative characterization of thixotropy of whole human blood // Biorheology, 1975, vol. 12. P. 279-282
  14. Gijsen F. G. H., Allanic E., van de Vosse F. N., Janssen J. D. The influence of non-Newtonian property of blood on the flow in large arteries: unsteady flow in a 900 curved tube // Journal of Biomechanics, 1999, vol. 32. P. 705-
  15. Artushkov L. S. Dinamika nenyutonovskih zhidkostei [The dynamics of non-Newtonian fluids]. Saint-Petersburg: Izd. tsentr. Mor. Tech. Un-ta, 1997. 459 p
  16. Sankar D. S., Hemalatha K. Non-linear mathematical models for blood flow through tapered tubes // Applied Mathematics and Computation, 2007, vol. 188. P. 567-582
  17. Molla M. M., Paul M. C. LES of non-Newtonian physiological blood flow in a model of arterial stenosis // Medical Engineering and Physics, 2012, vol. 34. P. 1079-1087
  18. Karimi S., Dabagh M., Vasava P., Dadvar M., Dabir B., Jalali P. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry // Journal of Non-Newtonian Fluid Mechanics, 2014, vol. 207. P. 42-52
  19. Caballero A. B., Lain S. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta // Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18. P. 1200-1216
  20. Ameenuddin M., Anand M., Massoudi M. Effects of shear-dependent viscosity and hematocrit on blood flow // Applied Mathematics and Computation, 2019, vol. 356. P. 299-311
  21. Abbasian M., Shams M., Valizadeh Z., Moshfegh A., Javadzadegan A., Cheng S. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation // Computer Methods and Programs in Biomedicine, 2020, vol. 186. P. 105185
  22. Soulis J. V., Giannoglou G. D., Chatzizisis Y. S., Seralidou K. V., Parcharidis G. E., Louridas G. E. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery // Medical Engineering and Physics, 2008, vol. 30. P. 9-19
  23. O’Callaghan S., Walsh M., McGloughlin T. Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to side vascular bypass graft anastomosis // Medical Engineering and Physics, 2006, vol. 28. P. 70-74
  24. Boyd J., Buick J. M., Green S. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method // Physics of Fluids, 2007, vol. 19. P. 093103
  25. Hippelheuser J. E., Lauric A., Cohen A. D., Malek A. M. Realistic non- Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs // Journal of Biomechanics, 2014, vol. 47. P. 3695-3703
  26. Elhanafy A., Guaily A., Elsaid A. Numerical simulation of blood flow in abdominal aortic aneurysms: effects of blood shear-thinning and viscoelastic properties // Mathematics and Computers in Simulation, 2019, vol. 160. P. 55-71
  27. Zaman A., Ali N., Sajid M. Numerical simulation of pulsatile flow of blood in a porous-saturated overlapping stenosed artery // Mathematics and Computers in Simulation, 2017, vol. 134. P. 1-16
  28. Iasiello M., Vafai K., Andreozzi A., Bianco N. Analysis of non-Newtonian effects on low-density lipoprotein accumulation in an artery // Journal of Biomechanics, 2016, vol. 49. P. 1437-1446
  29. Yeleswarapu Y. Y., Kameneva M. V., Rajagopal K. R., Antaki J. F. The flow of blood in tubes: theory and experiment // Mechanics Research Communications, 1998, vol. 25. P. 257-262
  30. Nandakumar N., Sahni K. C., Anand M. Pulsatile flow of a shear thinning model for blood through a two-dimensional stenosed vessel // European Journal of Mechanics, B/Fluids, 2015, vol. 49. P. 29-35
  31. Deyranlou A., Niazmand H., Sadeghi M. -R. Low-density lipoprotein accumulation within a carotid artery with multilayer elastic porous wall: fluid-structure interaction and non-Newtonian considerations // Journal of Biomechanics, 2015, vol. 48. P. 2948-2959
  32. Bilgi C., Atalik K. Effects of blood viscoelasticity on pulsatile hemodynamics in arterial aneurysms // Journal of Non-Newtonian Fluid Mechanics, 2020, vol. 279. P. 104263
  33. Skiadopoulos A., Neofytou P., Housiadas C. Comparison of blood rheological models in patient specific cardiovascular system simulations // Journal of Hydrodynamics, 2017, vol. 29. P. 293-304
  34. Elhanafy A., Guaily A. Numerical investigation of hematocrit variation effect on blood flow in an arterial segment with variable stenosis degree // Journal of Molecular Liquids, 2020, vol. 313. P. 113550
  35. Ghigo A. R., Lagree P. -Y., Fullana J. -M. A time-dependent non-Newtonian extension of a 1D blood flow model // Journal of Non-Newtonian Fluid Mechanics, 2018, vol. 253. P. 36-49
  36. Perdikaris P., Grinberg L., Karniadakis G. E. An effective fractal-tree closure model for simulating blood flow in large arterial networks // Annals of Biomedical Engineering, 2015, vol. 43. P. 1432-1442
  37. Sochi T. The flow of power law fluids in elastic vessels and porous media // Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 19. P. 324-329
  38. Mukhin S. I., Menyailova M. A., Sosnin N. V., Favorskii A. P. Analytic study of stationary hemodynamic flows in an elastic vessel with friction // Differential Equations, 2007, vol. 43. P. 1011-1015
  39. Delestre O., Lagree P. -Y. A ’well-balanced’ finite volume scheme for blood flow simulation // International Journal for Numerical Methods in Fluids, 2013, vol. 72. P. 177-205
  40. Ghigo A. R., Delestre O., Fullana J. -M., Lagree P. -Y. Low-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical properties // Journal of Computational Physics, 2017, vol. 331. P. 108-136
  41. Li G., Delestre O., Yuan L. Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries // International Journal for Numerical Methods in Fluids, 2018, vol. 86. P. 491-508
  42. Britton J., Xing Y. Well-balanced discontinuous Galerkin methods for the one dimensional blood flow through arteries model with man-at-eternal rest and living-man equilibria // Computers and Fluids, 2020, vol. 203. P. 104493
  43. Ghitti B., Berthon C., Le M. H., Toro E. F. A fully well-balanced scheme for the 1D blood flow equations with friction source term // Journal of Computational Physics, 2020, vol. 421. P. 109750
  44. Hernandez-Duenas G., Ramirez-Santiago G. A well-balanced positivity preserving central-upwind scheme for one-dimensional blood flow models // International Journal for Numerical Methods in Fluids, 2021, vol. 93. P. 369-
  45. Razavi M. C., Shirani E. Development of a general methods for designing microvascular using distribution of wall shear stress // Journal of Biomechanics, 2013, vol. 46. P. 2303-2309
  46. Kim S., Cho Y. I., Jeon A. H., Hogenauer B., Kensey K. R. A new method for blood viscosity measurement // Journal of Non-Newtonian Fluid Mechanics, 2000, vol. 94. P. 47-56
  47. Myers T. G. Application of non-Newtonian models to thin film flow // Physical Review E, 2015, vol. 72. P. 066302
  48. Canic S., Kim E. H. Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels // Mathematical Methods in the Applied Sciences, 2003, vol. 26. P. 1161-1186

Full text (pdf)