Synthesis of Control Providing Various Dynamic Properties of Free and Forced Motion of a Multidimensional System
Author(s):
Nikolay Evgenievich Zubov
Doctor of Technical Sciences, Professor, Professor of Department of Automatic Control Systems,
Dean of Rocket and Space Techniques Faculty
Bauman Moscow State Technical University (Bauman MSTU),
Professor of Postgraduate Studies
S.P. Korolev Rocket and Space Corporation “Energia” (S.P. Korolev RSC “Energia”)
Nik.Zubov@gmail.com
Vladimir Nikolaevich Ryabchenko
Doctor of Technical Sciences, Associate Professor,
Professor of Department of Automatic Control Systems,
Bauman MSTU
RyabchenkoVN@yandex.ru
Alexey Vladimirovich Lapin
Candidate of Technical Sciences,
Associate Professor of Department of Automatic Control Systems at Bauman MSTU,
engineer at State Research Institute of Aviation Systems (GosNIIAS)
AlexeyPoeme@yandex.ru
Irek Minyrakhmanovich Galiaskarov
Candidate of Technical Sciences
chief engineer at the Centre of Engineering and Management of Construction of
the Unified Energy System (CEMC UES)
Irek_Galiaskarov@mail.ru
Abstract:
A feedback control law with a precompensator is considered for a multidimensional dynamical
system. A special feature of the control synthesis is that the transfer matrix of the
precompensator is rectangular or its determinant is equal to zero. Thus, the problem of
irregular causal control laws synthesis is considered. The paper describes a control
synthesis method that provides various spectral contents (dynamic properties)
of a linear dynamical system at free and forced motion. To find a solution we apply the
system embedding technology. The improvement of embedding technology
methods is shown: by means of irregular control laws we provide various spectra of free
and forced components in the state or output vectors of a dynamical system. Theorems
on the synthesis of irregular control of a dynamic system by output and on physical
realizability of the control law by means of a precompensator are formulated. Methodic examples
of the synthesis are given.
Keywords
- feedback
- free and forced motion
- irregular causal control laws
- multidimensional dynamic system
- precompensator
References:
- Bukov, V. N., Goryunov, S. V., and Ryabchenko V. N. Analiz i Sintez Matrichnykh Lineinykh Sistem. Sravneniye Podkhodov [Analysis and Synthesis of Matrix Linear Systems. Comparing Approaches]. Avtomatika i Telemekhanika, iss. 11, p. 3-43, 2000. (In Russian)
- Osetinskii, N. I. Obzor Nekotorykh Rezul’tatov i Metodov v Sovremennoi Teorii Lineinykh Sistem [A Review of Some Results and Methods in the Modern Theory of Linear Systems]. Matematicheskiye Metody v Teorii Sistem, p. 328-379, 1989. (In Russian)
- Tannenbaum, A. Invariance and System Theory: Algebraic and Geometric Aspects. Lecture Notes in Mathematics. New-York: Springer-Verlag, 1981
- Aling, A., and Schumacher, J. M. A Nine Fold Canonical Decomposition for Linear System. Int. J. Control, iss. 39, p. 779-805, 1984
- Morse, A. S. Structural Invariants of Linear Multivariable Systems. SIAM J. Control, iss. 11, p. 446-465, 1973
- Hautus, M. L. J., and Heymann, H. Linear Feedback Decoupling: Transfer Function Analysis. IEEE Trans. Automat. Control, p. 823-832, 1983
- Lin, Ch. -An, and Hsien, T. -Fu. Decoupling Controller Design for Linear Multivariable Plants. IEEE Trans. Automat. Control, vol. 36, iss. 4, p. 485-489, 1991
- Kucera, V., and Toledo, E. C. A Review of Stable Exact Model Matching by State Feedback. 22nd Mediterranean Conf. on Control and Automat., p. 85-90, 2014
- Toledo, E. C., and Leon, R. J. J. Feedback Decoupling of Linear Multivariable Systems. IEEE Latin America Trans., vol. 13, iss. 8, p. 2529-2537, 2015
- Commault, C., Lafay, J. F., and Malabre, M. Structure of Linear Systems. Geometric and Transfer Matrix Approaches. Kybernetika, vol. 27, iss. 3, p. 170-185, 1991
- Ryabchenko, V. N. Embedding of Systems. Irregular Control Laws. Autom. Remote Control, vol. 62, iss. 7, p. 1192-1203, 2001
- Misrikhanov M. Sh., and Ryabchenko V. N. Kauzal’nyye i Antikauzal’nyye Diskretnyye Dinamicheskiye Sistemy [Causal and Anticausal Discrete Dynamic Systems]. Vestnik IGEU, iss. 6, p. 120-127, 2004. (In Russian)
- Zubov, N. E., Mikrin, E. A., and Ryabchenko, V. N. Matrichnye Metody v Teorii i Praktike Sistem Avtomaticheskogo Upravleniya Letatel’nykh Apparatov [Matrix Methods in Theory and Practice of Flying Vehicles Automatic Control Systems]. Moscow, Bauman MSTU Publ., 2016. 666 p. (In Russian)
- Cohn, P. M. Free Rings and their Relations. London: Academic Press, 1985. 588 p
- Malcolmson P. A Prime Matrix Ideal Yields a Skew Field. J. London Math. Soc., vol. 18, iss. 2, p. 221-233, 1978
- Malcolmson, P. Weakly Finite Matrix Localization. J. London Math. Soc., vol. 48, iss. 1, p. 31-38, 1993
- Bukov, V. N., and Ryabchenko, V. N. Vlojeniye System. Promatritsy [System Embedding. Pro-Matrices]. Avtomatika I Telemekhanika, iss. 4, p. 20-33, 2000. (In Russian)
- Bronnikov, A. M., Bukov, V. N., Ryabchenko, V. N., and Zubov, N. E. Algebraic Singularities of Dynamic Systems Associated with Zero Divisors of their Transfer Matrices. J. Comput. Syst. Sci. Int., vol. 43, iss. 3, p. 351-359, 2004
- Zubov, N. E., Misrikhanov, M. Sh., and Ryabchenko, V. N. Postkompensatsiya v Zadachakh Upravleniya Dvijeniyem Letatel’nykh Apparatov [Post-Compensation in the Tasks of Controlling the Flying Vehicles Motion]. Korolev: RSC “Energia” Publ., 2015. 132 p. (In Russian)
- Mikrin, E. A., Zubov, N. E., Lapin, A. V., Ryabchenko, V. N. Analytical formula of calculating a controller for linear SIMO-system. Differencialnie Uravnenia i Protsesy Upravlenia, 2020, (1), p. 1-11
- Mikrin, E. A., Ryabchenko, V. N., Zubov, N. E., Lapin, A. V. Analysis and synthesis of dynamic MIMO-system based on band matrices of special type. Differencialnie Uravnenia i Protsesy Upravlenia, 2020, (2), p. 1-14
- Zubov, N. E., Lapin, A. V., Ryabchenko, V. N. On relation between modal controllability of dynamic MIMO-system by output and a type of matrices with desirable spectra. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, (2), p. 1-12