ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

On a Reversible Three-dimensional System Containing Attractor and Lorenz Repeller

Author(s):

Alexander Sergeevich Gonchenko

Researcher
Nizhny Novgorod National Research University named after N.I. Lobachevsky,
23 Gagarina Ave., Nizhny Novgorod, 603022, Russia

agonchenko@mail.ru

Alexander Gennadievich Korotkov

Lead Engineer
Nizhny Novgorod National Research University named after N.I. Lobachevsky,
23 Gagarina Ave., Nizhny Novgorod, 603022, Russia

koral81@bk.ru

Evgenia Alexandrovna Samylina

graduate student
National Research University "Higher School Economics",
st. Bolshaya Pecherskaya, 25/12, Nizhny Novgorod, 603155, Russia

samylina_evgeniya@mail.ru

Abstract:

We study the problem on the existence of Lorenz-like attractors and repellers in three-dimensional time-reversible systems, as well as the structure of bifurcation scenarios for their emergence. In this connection, we consider a system that is the flow normal form for reversible bifurcations of a fixed point with the triplet (-1,-1,+1) of multipliers. The bifurcation set itself of the indicated reversible bifurcation should be extremely complex (the normal form contains 7 independent parameters). However, we are mainly interested here in bifurcations leading to the appearance of a symmetric pair "Lorenz attractor -- Lorenz repeller", which, as we show, can be studied within the framework of two-parameter subfamilies. In the paper, two main bifurcation scenarios for the emergence of such a pair are described, and also a quite unusual scenario is outlined for the appearance of Lorenz-like attractor and repeller in the case when the system has only two equilibria. The corresponding phenomenon seems new -- for comparison, we note that even the Lorenz system has three equilibria: one of them belongs to the attractor, and the other two reside in its "holes".

Keywords

References:

  1. Lorenz E. Deterministic nonperiodic flow // Journal of the Atmospheric Sciences. 1963. V. 20. No. 2. S. 130-141
  2. A. S. Gonchenko, “On attractors of the Lorenz type in the Celtic stone model, ” Bulletin of the Udmurt University. Mathematics. Mechanics. Computer Science. 2013. Vol. 2. P. 3-11.
  3. A. S. Gonchenko and S. V. Gonchenko, On the existence of Lorentz type attractors in the nonholonomic model of the " Celtic stone", Nelin. 2013. V. 9. No. 1. S. 77-89
  4. Gonchenko S. V., Gonchenko A. S., Kazakov A. O. Richness of chaotic dynamics in nonholonomic models of a Celtic stone // Regular and Chaotic Dynamics. 2013. V. 15. No. 5. S. 521-538
  5. Gonchenko A. S., Samylina E. A. On the region of existence of a discrete Lorenz attractor in the nonholonomic model of a Celtic stone // Radiophysics and Quantum Electronics. 2019. V. 62. No. 5. S. 369-384
  6. Gonchenko A. S., Samylina E. A., Korotkov A. G., Turaev D. On reversible bifurcations leading to the emergence of Lorenz-like attractor and repeller // Nonlinearity. (to appear)
  7. Shilnikov A. L., Shilnikov L. P., Turaev D. V. Normal forms and Lorenz attractors // Int. J. of Bifurcation and chaos. 1993. V. 3. No. 05. S. 1123-1139
  8. Gonchenko S. V., Ovsyannikov I. I., Simo C., Turaev D. Three-dimensional Henon-like maps and wild Lorenz-like attractors // Int. J. of Bifurcation and chaos. 2005. V. 15. No. 11. S. 3493-3508
  9. V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov, “On the origin and structure of the Lorenz attractor, ” Dokl. 1977. V. 234. No. 2. S. 336-339
  10. V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov, On attracting non-rough sets of Lorenz attractor type, Trudy MMOR. 1982. V. 44. S. 150-212
  11. Leonov G. A., Kuznetsov N. V. On differences and similarities in the analysis of Lorenz, Chen, and Lu systems // Applied Mathematics and Computation. 2015. No. 256. S. 334-343
  12. Leonov G. A., Mokaev R. N., Kuznetsov N. V., and Mokaev T. N. Homoclinic Bifurcations and Chaos in the Fishing Principle for the Lorenz-like Systems // Int. J. Bifurcation and Chaos. 2020. V. 30. No. 8. S. 2050124
  13. Kuznetsov N. V., Mokaev T. N., Kuznetsova O. A., Kudryashova E. V. The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension // Nonlinear Dyn.. 2020. No. 102. P. 713-732
  14. Shilnikov L. P. Theory of bifurcations and the Lorenz model // Supplement I to the book: J. Marsden, M. McCracken “Cycle birth bifurcation and its applications”. M., Mir. 1980. S. 19
  15. Shilnikov A. L. On bifurcations of the Lorenz attractor in the Shimuizu Morioka model // Physica D. 1993. No. 62. P. 338-346
  16. Dumortier F., Ibanez S., Kokubu H. Cocoon bifurcation in three-dimensional reversible vector fields // Nonlinearity. 2006. V. 19. No. 2. S. 305-328
  17. A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, and E. A. Samylina, Chaotic dynamics and multistability in a nonholonomic model of a Celtic stone, Izv. universities. Radiophysics. 2018. V. 61. No. 10. P. 867-882
  18. L. P. Shilnikov, On the generation of a periodic motion from a trajectory doubly asymptotic to a saddle-type equilibrium state, Matem. Sat. 1968. T. 77(119). No. 3, pp. 461-472. Electronic journal. http://diffjournal.spbu.ru/ 16 Differential equations and control processes, N. 4, 2021
  19. Aframovich V. S., Shilnikov L. P. Strange attractors and quasi-attractors // in Nonlinear Dynamics and Turbulence, eds G. I. Barenblatt, G. Iooss, D. D. Joseph (Boston, Pitmen). 1983
  20. Bykov V. V., Shilnikov A. L. On the boundaries of the domain of existence of the Lorenz attractor // Selecta Mathematica Sovietica. 1992. V. 11. No. 4. S. 375-382
  21. Barrio R., Shilnikov A., and Shilnikov L. Kneadings, symbolic dynamics and painting Lorenz chaos // Int. J. Bifurcation Chaos. 2012. V. 22. S. 1230016
  22. Gonchenko S. Reversible Mixed Dynamics: A Concept and Examples // Discontinuity, Nonlinearity, and Complexity. 2016. V. 5. No. 4. S. 365-374
  23. S. V. Gonchenko and D. V. Turaev, “On three types of dynamics and the notion of attractor, ” Trudy MIAN. 2017. V. 297. S. 133-157

Full text (pdf)