Dynamics of Three Coupled Generators of Quasi-periodic Oscillations
Author(s):
Alexander Petrovich Kuznetsov
Leading Researcher
Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
apkuz@rambler.ru
Yuliya Viktorovna Sedova
Senior Researcher
Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
sedovayv@yandex.ru
Nataliya Vladimirovna Stankevich
Senior Researcher
National Research University "Higher School of Economics",
stankevichnv@mail.ru
Abstract:
The dynamics of three coupled generators capable of demonstrating autonomous
quasi-periodic oscillations is studied. The complex structure of the Lyapunov charts
of the system is discussed, which reveals invariant tori of different dimensions,
quasi-periodic bifurcations of tori, and Arnold’s resonant web based on tori of
different dimensions. Cases of different types of tuning of individual generators
(periodic oscillations, quasi-periodic oscillations) are considered. A detailed numerical
bifurcation analysis of the equilibrium state and limit cycles, which form a complex
picture of dynamic regimes, is carried out.Common features and differences compared
to the case of three coupled van der Pol oscillators are discussed.
Keywords
- Arnold resonance web
- invariant tori
- Lyapunov exponents
- quasi-periodic oscillations
References:
- Andronov A., Vitt A., Khaikin S. Teoriya kolebaniy. M. : Fizmatlit., 1959
- Ott E. Chaos in dynamical systems. Cambridge university press, 2002
- Matsumoto T. Chaos in electronic circuits // Proceedings of the IEEE. 1987. Vol. 75. no. 8. P. 1033-1057
- Shilnikov A., Nicolis G., Nicolis C. Bifurcation and predictability analysis of a low-order atmospheric circulation model // International Journal of Bifur[1]cation and Chaos. 1995. Vol. 5. no. 06. P. 1701-1711
- Broer H., Sim´ o C., Vitolo R. Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing // Nonlinearity. 2002. Vol. 15. no. 4. P. 1205
- Broer H., Vitolo R., Sim´ o C. Quasi-periodic H´ enon-like attractors in the Lorenz-84 climate model with seasonal forcing // EQUADIFF 2003. World Scientific, 2005. P. 601-606
- Straube R., Flockerzi D., M¨ uller S. C., Hauser M. J. Origin of bursting pH oscillations in an enzyme model reaction system // Physical Review E. 2005. Vol. 72. no. 6. P. 066205
- Straube R., Flockerzi D., Hauser M. Sub-Hopf/fold-cycle bursting and its relation to (quasi-) periodic oscillations // Journal of Physics: Conference Series / IOP Publishing. Vol. 55. 2006. P. 020
- Kuznetsov A., Kuznetsov S., Mosekilde E., Stankevich N. Generators of quasiperiodic oscillations with three-dimensional phase space // The European Physical Journal Special Topics. 2013. Vol. 222. no. 10. P. 2391-2398
- Kuznetsov A. P., Stankevich N. V. Avtonomnye sistemy s kvaziperiodicheskoy dinamikoy. Primery I svoistva: Obzor // Izvestiya vysshyh uchebnyh zavedenij. Prikladnaya nelinejnaya dinamika. 2015. Vol. 23. no. 3. P. 71-93
- Bao B., Wu P., Bao H. et al. Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator // Chaos, Solitons & Fractals. 2018. Vol. 106. P. 161- 170
- Anishchenko V. S., Nikolaev S. M. Generator kvaziperiodicheskih kolebanij. Bifurkaciya udvoeniya tora // Pis’ma v ZhTF. 2005. Vol. 31. no. 19. P. 88-94
- Anishchenko V., Nikolaev S., Kurths J. Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus // Physical Review E. 2007. Vol. 76. no. 4. P. 046216
- Anishchenko V., Nikolaev S., Kurths J. Winding number locking on a two[1]dimensional torus: Synchronization of quasiperiodic motions // Physical Re[1]view E. 2006. Vol. 73. no. 5. P. 056202
- Anishchenko V. S., Nikolaev S. M. Ustojchivost, sinhronizatsiya b razrushenie kvaziperiodicheskih kolebanij // Russian Journal of Nonlinear Dynamics. 2006. Vol. 2. no. 3. P. 267-278
- Anishchenko V. S., Vadivasova T. E. Lekcii po nelinejnoj dinamike. M. - Izhevsk. RCD, 2011
- Kuznetsov A. P., Sedova Yu. V. Vozdejstvie garmonicheskogo signala na generator kvaziperiodicheskih kolebanij Anishchenko-Astakhova // Pis’ma v ZhTF. 2022. Vol. 48. no. 4
- Stankevich N. V., Kurths J., Kuznetsov A. P. Forced synchronization of quasiperiodic oscillations // Communications in Nonlinear Science and Nu[1]merical Simulation. 2015. Vol. 20. no. 1. P. 316-323
- Kuznetsov A., Kuznetsov S., Shchegoleva N., Stankevich N. Dynamics of coupled generators of quasiperiodic oscillations: Different types of synchro[1]nization and other phenomena // Physica D: Nonlinear Phenomena. 2019. Vol. 398. P. 1-12
- Kuznetsov A. P., Sedova Yu. V., Stankevich N. V. Dva svyazannyh kvaziperiodocheskih generatora, vozbuzhdaemyh garmonicheskim signalom // Zhurnal tekhnicheskoj fiziki. 2021. Vol. 91. no. 11. P. 1619-1624
- Broer H., Sim´ o C., Vitolo R. The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: the Arnol’d resonance web // Bulletin of the belgian mathematical society-Simon stevin. 2008. Vol. 15. no. 5. P. 769-787
- Vitolo R., Broer H., Sim´ o C. Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems // Regular and Chaotic Dynamics. 2011. Vol. 16. no. 1. P. 154-184
- Kuznetsov Y. A., Meijer H. G. Numerical Bifurcation Analysis of Maps. Cam[1]bridge University Press, 2019. Vol. 34
- Kamiyama K., Komuro M., Endo T., Aihara K. Classification of bifurcations of quasi-periodic solutions using lyapunov bundles // International Journal of Bifurcation and Chaos. 2014. Vol. 24. no. 12. P. 1430034
- Komuro M., Kamiyama K., Endo T., Aihara K. Quasi-periodic bifurcations of higher-dimensional tori // International Journal of Bifurcation and Chaos. 2016. Vol. 26. no. 07. P. 1630016
- Sekikawa M., Inaba N. Chaos after Accumulation of Torus Doublings // International Journal of Bifurcation and Chaos. 2021. Vol. 31. no. 01. P. 2150009
- Borkowski L., Stefanski A. Stability of the 3-torus solution in a ring of coupled Duffing oscillators // The European Physical Journal Special Topics. 2020. Vol. 229. no. 12. P. 2249-2259
- Gonchenko A., Gonchenko S., Shilnikov L. P. K voprosu o stsenariyah vozniknoveniya haosa u trehmernyh otobrazhenij // Russian Journal of Nonlinear Dynamics. 2012. Vol. 8. no. 1. P. 3-28
- Gonchenko A., Gonchenko S., Turaev D. Doubling of invariant curves and chaos in three-dimensional diffeomorphisms // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2021. Vol. 31. no. 11. P. 113130
- Banerjee S., Giaouris D., Missailidis P., Imrayed O. Local bifurcations of a quasiperiodic orbit // International Journal of Bifurcation and Chaos. 2012. Vol. 22. no. 12. P. 1250289
- Patra M., Banerjee S. Bifurcation of quasiperiodic orbit in a 3D piecewise linear map // International Journal of Bifurcation and Chaos. 2017. Vol. 27. no. 10. P. 1730033
- Hidaka S., Inaba N., Sekikawa M., Endo T. Bifurcation analysis of four[1]frequency quasi-periodic oscillations in a three-coupled delayed logistic map // Physics Letters A. 2015. Vol. 379. no. 7. P. 664-668
- Zhusubaliyev Z. T., Avrutin V., Medvedev A. Doubling of a closed invariant curve in an impulsive GoodwinвЂTMs oscillator with delay // Chaos, Solitons & Fractals. 2021. Vol. 153. P. 111571
- Pikovsky A., Politi A. Lyapunov exponents: a tool to explore complex dy[1]namics. Cambridge University Press, 2016
- Kuznetsov N., Leonov G., Mokaev T. et al. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system // Nonlinear dynamics. 2018. Vol. 92. no. 2. P. 267-285
- Rosenblum M., Kurths J. Synchronization: a universal concept in nonlinear science. Cambridge University Press, 2003
- Balanov A., Janson N., Postnov D., Sosnovtseva O. From Simple to Complex. Springer, 2009
- Emelianova Y. P., Kuznetsov A., Sataev I., Turukina L. Synchronization and multi-frequency oscillations in the low-dimensional chain of the self[1]oscillators // Physica D: Nonlinear Phenomena. 2013. Vol. 244. no. 1. P. 36-49
- Ermentrout B., Simulating A. Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students // SIAM, Philadelphia. 2002