ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Dynamics of Three Coupled Generators of Quasi-periodic Oscillations

Author(s):

Alexander Petrovich Kuznetsov

Leading Researcher
Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Saratov Branch

apkuz@rambler.ru

Yuliya Viktorovna Sedova

Senior Researcher
Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Saratov Branch

sedovayv@yandex.ru

Nataliya Vladimirovna Stankevich

Senior Researcher
National Research University "Higher School of Economics",

stankevichnv@mail.ru

Abstract:

The dynamics of three coupled generators capable of demonstrating autonomous quasi-periodic oscillations is studied. The complex structure of the Lyapunov charts of the system is discussed, which reveals invariant tori of different dimensions, quasi-periodic bifurcations of tori, and Arnold’s resonant web based on tori of different dimensions. Cases of different types of tuning of individual generators (periodic oscillations, quasi-periodic oscillations) are considered. A detailed numerical bifurcation analysis of the equilibrium state and limit cycles, which form a complex picture of dynamic regimes, is carried out.Common features and differences compared to the case of three coupled van der Pol oscillators are discussed.

Keywords

References:

  1. Andronov A., Vitt A., Khaikin S. Teoriya kolebaniy. M. : Fizmatlit., 1959
  2. Ott E. Chaos in dynamical systems. Cambridge university press, 2002
  3. Matsumoto T. Chaos in electronic circuits // Proceedings of the IEEE. 1987. Vol. 75. no. 8. P. 1033-1057
  4. Shilnikov A., Nicolis G., Nicolis C. Bifurcation and predictability analysis of a low-order atmospheric circulation model // International Journal of Bifur[1]cation and Chaos. 1995. Vol. 5. no. 06. P. 1701-1711
  5. Broer H., Sim´ o C., Vitolo R. Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing // Nonlinearity. 2002. Vol. 15. no. 4. P. 1205
  6. Broer H., Vitolo R., Sim´ o C. Quasi-periodic H´ enon-like attractors in the Lorenz-84 climate model with seasonal forcing // EQUADIFF 2003. World Scientific, 2005. P. 601-606
  7. Straube R., Flockerzi D., M¨ uller S. C., Hauser M. J. Origin of bursting pH oscillations in an enzyme model reaction system // Physical Review E. 2005. Vol. 72. no. 6. P. 066205
  8. Straube R., Flockerzi D., Hauser M. Sub-Hopf/fold-cycle bursting and its relation to (quasi-) periodic oscillations // Journal of Physics: Conference Series / IOP Publishing. Vol. 55. 2006. P. 020
  9. Kuznetsov A., Kuznetsov S., Mosekilde E., Stankevich N. Generators of quasiperiodic oscillations with three-dimensional phase space // The European Physical Journal Special Topics. 2013. Vol. 222. no. 10. P. 2391-2398
  10. Kuznetsov A. P., Stankevich N. V. Avtonomnye sistemy s kvaziperiodicheskoy dinamikoy. Primery I svoistva: Obzor // Izvestiya vysshyh uchebnyh zavedenij. Prikladnaya nelinejnaya dinamika. 2015. Vol. 23. no. 3. P. 71-93
  11. Bao B., Wu P., Bao H. et al. Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator // Chaos, Solitons & Fractals. 2018. Vol. 106. P. 161- 170
  12. Anishchenko V. S., Nikolaev S. M. Generator kvaziperiodicheskih kolebanij. Bifurkaciya udvoeniya tora // Pis’ma v ZhTF. 2005. Vol. 31. no. 19. P. 88-94
  13. Anishchenko V., Nikolaev S., Kurths J. Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus // Physical Review E. 2007. Vol. 76. no. 4. P. 046216
  14. Anishchenko V., Nikolaev S., Kurths J. Winding number locking on a two[1]dimensional torus: Synchronization of quasiperiodic motions // Physical Re[1]view E. 2006. Vol. 73. no. 5. P. 056202
  15. Anishchenko V. S., Nikolaev S. M. Ustojchivost, sinhronizatsiya b razrushenie kvaziperiodicheskih kolebanij // Russian Journal of Nonlinear Dynamics. 2006. Vol. 2. no. 3. P. 267-278
  16. Anishchenko V. S., Vadivasova T. E. Lekcii po nelinejnoj dinamike. M. - Izhevsk. RCD, 2011
  17. Kuznetsov A. P., Sedova Yu. V. Vozdejstvie garmonicheskogo signala na generator kvaziperiodicheskih kolebanij Anishchenko-Astakhova // Pis’ma v ZhTF. 2022. Vol. 48. no. 4
  18. Stankevich N. V., Kurths J., Kuznetsov A. P. Forced synchronization of quasiperiodic oscillations // Communications in Nonlinear Science and Nu[1]merical Simulation. 2015. Vol. 20. no. 1. P. 316-323
  19. Kuznetsov A., Kuznetsov S., Shchegoleva N., Stankevich N. Dynamics of coupled generators of quasiperiodic oscillations: Different types of synchro[1]nization and other phenomena // Physica D: Nonlinear Phenomena. 2019. Vol. 398. P. 1-12
  20. Kuznetsov A. P., Sedova Yu. V., Stankevich N. V. Dva svyazannyh kvaziperiodocheskih generatora, vozbuzhdaemyh garmonicheskim signalom // Zhurnal tekhnicheskoj fiziki. 2021. Vol. 91. no. 11. P. 1619-1624
  21. Broer H., Sim´ o C., Vitolo R. The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: the Arnol’d resonance web // Bulletin of the belgian mathematical society-Simon stevin. 2008. Vol. 15. no. 5. P. 769-787
  22. Vitolo R., Broer H., Sim´ o C. Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems // Regular and Chaotic Dynamics. 2011. Vol. 16. no. 1. P. 154-184
  23. Kuznetsov Y. A., Meijer H. G. Numerical Bifurcation Analysis of Maps. Cam[1]bridge University Press, 2019. Vol. 34
  24. Kamiyama K., Komuro M., Endo T., Aihara K. Classification of bifurcations of quasi-periodic solutions using lyapunov bundles // International Journal of Bifurcation and Chaos. 2014. Vol. 24. no. 12. P. 1430034
  25. Komuro M., Kamiyama K., Endo T., Aihara K. Quasi-periodic bifurcations of higher-dimensional tori // International Journal of Bifurcation and Chaos. 2016. Vol. 26. no. 07. P. 1630016
  26. Sekikawa M., Inaba N. Chaos after Accumulation of Torus Doublings // International Journal of Bifurcation and Chaos. 2021. Vol. 31. no. 01. P. 2150009
  27. Borkowski L., Stefanski A. Stability of the 3-torus solution in a ring of coupled Duffing oscillators // The European Physical Journal Special Topics. 2020. Vol. 229. no. 12. P. 2249-2259
  28. Gonchenko A., Gonchenko S., Shilnikov L. P. K voprosu o stsenariyah vozniknoveniya haosa u trehmernyh otobrazhenij // Russian Journal of Nonlinear Dynamics. 2012. Vol. 8. no. 1. P. 3-28
  29. Gonchenko A., Gonchenko S., Turaev D. Doubling of invariant curves and chaos in three-dimensional diffeomorphisms // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2021. Vol. 31. no. 11. P. 113130
  30. Banerjee S., Giaouris D., Missailidis P., Imrayed O. Local bifurcations of a quasiperiodic orbit // International Journal of Bifurcation and Chaos. 2012. Vol. 22. no. 12. P. 1250289
  31. Patra M., Banerjee S. Bifurcation of quasiperiodic orbit in a 3D piecewise linear map // International Journal of Bifurcation and Chaos. 2017. Vol. 27. no. 10. P. 1730033
  32. Hidaka S., Inaba N., Sekikawa M., Endo T. Bifurcation analysis of four[1]frequency quasi-periodic oscillations in a three-coupled delayed logistic map // Physics Letters A. 2015. Vol. 379. no. 7. P. 664-668
  33. Zhusubaliyev Z. T., Avrutin V., Medvedev A. Doubling of a closed invariant curve in an impulsive GoodwinвЂTMs oscillator with delay // Chaos, Solitons & Fractals. 2021. Vol. 153. P. 111571
  34. Pikovsky A., Politi A. Lyapunov exponents: a tool to explore complex dy[1]namics. Cambridge University Press, 2016
  35. Kuznetsov N., Leonov G., Mokaev T. et al. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system // Nonlinear dynamics. 2018. Vol. 92. no. 2. P. 267-285
  36. Rosenblum M., Kurths J. Synchronization: a universal concept in nonlinear science. Cambridge University Press, 2003
  37. Balanov A., Janson N., Postnov D., Sosnovtseva O. From Simple to Complex. Springer, 2009
  38. Emelianova Y. P., Kuznetsov A., Sataev I., Turukina L. Synchronization and multi-frequency oscillations in the low-dimensional chain of the self[1]oscillators // Physica D: Nonlinear Phenomena. 2013. Vol. 244. no. 1. P. 36-49
  39. Ermentrout B., Simulating A. Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students // SIAM, Philadelphia. 2002

Full text (pdf)