A Time-optimal Problem of Stopping a Two-link Pendulum on a Movable Mount
Author(s):
Anton Pavlovich Potapov
Technician of Laboratory 38 of Instute of Control Sciences RAS (ICS RAS),
4th year student of the Department of Physical and Mathematical Methods of Control,
Faculty of Physics, Moscow State University M.V. Lomonosov (MSU)
potapov@ipu.ru
Andrey Alekseevich Galyaev
Doctor of Technician Sciences, Corresponding Member RAS,
Head of the Laboratory 38 of Instute of Control Sciences RAS (ICS RAS),
Head of the Department of Physical and Mathematical Methods of Control,
Faculty of Physics, Moscow State University M.V. Lomonosov (MSU)
galaev@ipu.ru
Abstract:
We consider a time-optimal problem of stopping a two-link
pendulum on a movable mount. Given nonlinear system with the lack of and
limitation on the control resource is linearized in the neighborhood of a stable
equilibrium position. For a linearized system the Pontryagin maximum principle
is used and the optimal control law obtained. To estimate parameters of the
law basing on finding out an orthogonal subspace was an algorithm developed
for constructing a time-optimal system control. A software module has been
developed in the Matlab environment with the help of which a comparison of
the dynamics of linear and nonlinear systems with the obtained control law was
made.
Keywords
- Pontryagin maximum principle
- time-optimal problem
- two-link pendulum
References:
- Cohen B. J., Chitta S., Likhachev M., Search-based planning for manipulation with motion primitives. Proceedings: IEEE International Conference on Robotics and Automation. — 2010. — pp. 2902-2908
- Hart P. E., Nilsson N. J., Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics — 1968. — Т. 4. — No 2. — pp. 100-107
- Isabel F., Rogelio L. Nelineinoe upravlenie mekhanicheskimi sistemami s defitsitom upravlyaushchikh vosdeistvi [Non-linear control for underactuated mechanical systems]. Moscow, Izhevsk — 2012. — 312 p. (In Russ. )
- Kim JY., Park IW., Oh JH. Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor. J Intell Robot Syst. — 2007. — No 48. — pp. 457-484
- Semion A. A. [Control of an inverted pendulum by a regulator with state-dependent coefficients]. Mezhvuzovskaia nauchno-tekhnicheskaia konferentsiia studentov, aspirantov i molodykh spetsialistov im. E. V. Armenskogo: Materialy konferetsii. — 2018. — pp. 30-31. (In Russian)
- Danik Y., Dmitriev M. The Construction of Stabilizing Regulators Sets for Nonlinear Control Systems with the Help of Pad ́ e Approximations. Advanced Structured Materials. — 2021. — No 139. - pp. 45-62
- Danik Y., Dmitriev M. Construction of Approximate Parametric Sets of Regulators for Weakly Nonlinear Discrete Control Problems on the Semi-axis based on the Asymptotic Expansions. Conference: 2022 15th International Conference Management of large-scale system development. — 2022. — pp. 1-
- Danik Iu. E. [Stabilizing Regulator for Nonlinear Systems Based on Fuzzy Matrix Pade Approximation]. Informatsionnye Technologii i vychislitelnye sistemy. — 2021. — No 1. — pp. 42-49. (In Russ. )
- Ovtsov S. A., Saroka V. V. [The development of optimal control systems by robotic-manipulator of galvanic lines for maturity vibrations suspension in transition modes]. Trudy BGTU. Seria 3: Fiziko-matematicheskie nauki i informatika. — 2017. — Vol. 194. — No. 1. — pp. 63-68. (In Russ. )
- Manita L. A., Ronzhina M. I. [Optimal Synthesis in the Control Problem of an n-Link Inverted Pendulum with a Moving Base] Optimalnoe upravlenie, SMFN. — 2015. — No. 56. — pp. 129—144. (In Russ. )
- Anan’evskii I. M., Anokhin N. V. [Control of the spatial motion of a multilink inverted pendulum using a torque applied to the first link]. Prikladnaia matematika i mekhanika. — 2014. — Vol. 78. — No. 6. — pp. 755-765. (In Russ. )
- Martynenko U. G., Formalskii A. M. [Controlled pendulum on a moveable base], Isvestiia Rossiiskoi akademii nauk. Mekhanika tverdogo tela. — 2013. — No. 1 — pp. 9-23. (In Russ. )
- Rapoport L. B., Generalov A. A. [Control of an inverted pendulum on a weel]. Avtomat. i telemekh. — 2022. — No. 8 — pp. 3-28. (In Russ. )
- Galyaev A. A. [Problem of optimal oscillator control for nulling its energy under bounded control action]. Avtomat. i telemekh. — 2009. — No. 3. — pp. 24-23. (In Russ. )
- Sachkov IU. L. Vvedenie v geometricheskuiu teoriiu upravleniia. [Introduction to the geometric control theory]. Moscow, URSS. — 2021. — 160 p
- Boltianskii V. G., Gamkrelidze R. V., Potryagin L. S. [Theory of oiptimal processes. I. Maximum Principle. ] Isv. AN SSSR. Ser. Matem. — 1960. — Vol. 24. — pp. 3-42
- Berlin L. M., Galyaev A. A., Lysenko P. V. [Geometric Approach to the problem of optimal scalar control of two nonsynchronous oscillators]. Algevra, geometriia i combinatorika, Itogi nauli i tekhn. Ser. Sovrem. Mat. i ee pril. Temat. Obz. — 2022. — No. 215. — pp. 40-51. (In Russ. )
- Berlin L. M., Galyaev A. A. [Extremum conditions under limited scalar control of two non-synchronous oscillators in the time-optimal problem]. Dokl. RAN. Matem., iform., prots. upr. — 2022. — No. 505.