ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

On the Recent Progress in Effective Dimension Estimates for Delay Equations

Author(s):

Mikhail Mikhailovich Anikushin

PhD, senior researcher at the Department
of Applied Cybernetics, Faculty of Mathematics and Mechanics,
St Petersburg University

demolishka@yandex.ru

Andrey Olegovich Romanov

PhD student at the Department
of Applied Cybernetics, Faculty of Mathematics and Mechanics,
St Petersburg University

romanov.andrey.twai@yandex.ru

Abstract:

We discuss the recent progress on studying volume contraction for linear cocycles generated by delay equations obtained by the authors. On the basis, we use adapted metrics constructed explicitly or via the Frequency Theorem. In contrast to many existing results, this approach allows to provide effective estimates in terms of the system parameters (including delays). We illustrate the exposed general results by means of the nonautonomous and classical Nicholson blowflies models, where effective dimension estimates for global attractors and robust conditions for the global stability are obtained.

Keywords

References:

  1. Anikushin M. M. Variational description of uniform Lyapunov exponents via adapted metrics on exterior products. arXiv preprint. 2024. arXiv:2304. 05713
  2. Anikushin M. M. Spectral comparison of compound cocycles generated by delay equations in Hilbert spaces. arXiv preprint. 2024. arXiv:2302. 02537
  3. Anikushin M. M., Romanov A. O. Frequency conditions for the global stability of nonlinear delay equations with several equilibria. arXiv preprint. 2024. arXiv:2306. 04716
  4. Anikushin M. M. Frequency theorem and inertial manifolds for neutral delay equations. J. Evol. Equ. 2023. Vol. 23, no. 66
  5. Anikushin M. M., Romanov A. O. Hidden and unstable periodic orbits as a result of homoclinic bifurcations in the Suarez-Schopf delayed oscillator and the irregularity of ENSO. Phys. D: Nonlinear Phenom. 2023. Vol. 445, 133653
  6. Anikushin M. M. Nonlinear semigroups for delay equations in Hilbert spaces, inertial manifolds and dimension estimates. Differ. Uravn. Protsessy Upravl. 2022. no 4
  7. Anikushin M. M. Inertial manifolds and foliations for asymptotically compact cocycles in Banach spaces. arXiv preprint. 2022. arXiv:2012. 03821
  8. Anikushin M. M. Frequency theorem for parabolic equations and its relation to inertial manifolds theory. J. Math. Anal. Appl. 2021. Vol. 505, no. 1, 125454
  9. Anikushin M. M. Almost automorphic dynamics in almost periodic cocycles with one-dimensional inertial manifold. Differ. Uravn. Protsessy Upr. 2021. No. 2, P. 13-48 (In Russ. )
  10. Anikushin M. M. On the Liouville phenomenon in estimates of fractal dimensions of forced quasi-periodic oscillations. Vestn. St. Petersbg. Univ., Math. 2019. Vol. 52, no. 3. P. 234-243
  11. Anikushin M. M., Reitmann V., Romanov A. O. Analytical and numerical estimates of the fractal dimension of forced quasiperiodic oscillations in control systems. Differ. Uravn. Protsessy Upr. 2019. no. 2, P. 162-183 (In Russ. )
  12. Ansmann G. Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE. Chaos. 2018. Vol. 28, no. 4, 043116
  13. Carvalho A. N., Langa J. A., Robinson J. C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. Springer Science & Business Media, 2012
  14. Chepyzhov V. V., Ilyin A. A. On the fractal dimension of invariant sets; applications to Navier-Stokes equations. Discrete Contin. Dyn. Syst. 2004. Vol. 10, no. 1& 2, P. 117-136
  15. Chicone C. Inertial flows, slow flows, and combinatorial identities for delay equations. J. Dyn. Diff. Equat. 2004. Vol. 16, no. 3, P. 805-831
  16. Chicone C. Inertial and slow manifolds for delay equations with small delays. J. Differ. Equations. 2003. Vol 190, no. 2. P. 364-406
  17. Chueshov I. Dynamics of Quasi-stable Dissipative Systems. Berlin: Springer, 2015
  18. Gyö ri I., Trofimchuk S. Global attractivity in !!!! ERROR!!! IMAGE IS NOT ALLOWED!. Dynam. Syst. Appl. 1999. Vol. 8, P. 197-210
  19. Gurney W. S. C., Blythe S. P., Nisbet R. M. Nicholson's blowflies revisited. Nature. 1980. Vol. 287, no. 5777, P. 17-21
  20. Hale J. K. Theory of Functional Differential Equations. Springer-Verlag, New York, 1977
  21. Hastings A., Hom C. L., Ellner S., Turchin P., Godfray H. C. J. Chaos in ecology: is mother nature a strange attractor? Annu. Rev. Ecol. Evol. Syst. 1993. Vol. 24, no. 1, 1-33
  22. Hu W., Caraballo T. Hausdorff and fractal dimensions of attractors for functional differential equations in Banach spaces. J. Differ. Equ. 2024. Vol. 385, P. 395-423
  23. Jingwen L. Global attractivity in Nicholson’s blowflies. Appl. Math. 1996. Vol. 11, no 4., P. 425-434
  24. Kulenović M. R. S., Ladas G. F., Sficas Y. G. Global attractivity in Nicholson's blowflies. Appl. Anal. 1992. Vol. 43, no. 1-2, P. 109-124
  25. Kuznetsov N. V., Reitmann V. Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Switzerland: Springer International Publishing AG, 2021
  26. Kuznetsov N. V., Mokaev T. N., Kuznetsova O. A., Kudryashova E. V. The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension. Nonlinear Dyn. 2020. Vol. 102, P. 713-732
  27. Kuznetsov N. V. The Lyapunov dimension and its estimation via the Leonov method. Phys. Lett. A. 2016. Vol. 380, no. 25-26, P. 2142-2149
  28. Leonov G. A., Kuznetsov N. V., Korzhemanova N. A., Kusakin D. V. Lyapunov dimension formula for the global attractor of the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 2016. Vol. 41, P. 84-103
  29. Leonov G. A. Lyapunov dimension formulas for Lorenz-like systems. Doklady Mathematics. 2016. Vol. 93, no. 3
  30. Leonov G., Mokaev T. Lyapunov dimension formula for the attractor of the Glukhovsky-Dolzhansky system. Doklady Mathematics. 2016. Vol. 93, no. 1
  31. Leonov G. A., Alexeeva T. A., Kuznetsov N. V. Analytic exact upper bound for the Lyapunov dimension of the Shimizu-Morioka system. Entropy. 2015. Vol. 17, no. 7, 5101
  32. Leonov G. A. Lyapunov dimensions formulas for Hé non and Lorenz attractors. Alg. Anal. 2001. Vol. 13, P. 155-170 (In Russ. ) English transl. St. Petersburg Math. J. 2002. Vol. 13, no. 3, P. 453-464
  33. Leonov G. A., Boichenko V. A. Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors. Acta Appl. Math. 1992. Vol 26., no. 1, P. 1-60
  34. Li M. Y., Muldowney J. S. A geometric approach to global-stability problems. SIAM J. Math. Anal. 1996. Vol. 27, no. 4, P. 1070-1083
  35. Li M. Y., Muldowney J. S. Lower bounds for the Hausdorff dimension of attractors. J. Dyn. Differ. Equ. 1995. Vol. 7, no. 3, P. 457-469
  36. Liz E., Tkachenko V., Trofimchuk S. A global stability criterion for scalar functional differential equations. SIAM J. Math. Anal. 2003. Vol. 35, no. 3, 596-622
  37. Louzeiro M., Kawan C., Hafstein S., Giesl P., Yuan J. A Projected Subgradient Method for the Computation of Adapted Metrics for Dynamical Systems. SIAM J. Appl. Dyn. Syst. 2022. Vol. 21, no. 4, P. 2610-2641
  38. Mallet-Paret J., Nussbaum R. D. Tensor products, positive linear operators, and delay-differential equations. J. Dyn. Diff. Equat. 2013. Vol. 25, P. 843-905
  39. Mallet-Paret J., Sell G. R. The Poincaré -Bendixson theorem for monotone cyclic feedback systems with delay. J. Differ. Equations. 1996. Vol. 125, P. 441-489
  40. Mallet-Paret J. Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. Differ. Equations. 1976. Vol. 22, no. 2, P. 331-348
  41. Smith R. A. Some applications of Hausdorff dimension inequalities for ordinary differential equations. P. Roy. Soc. Edinb. A. 1986. Vol. 104, no. 3-4, P. 235-259
  42. So J. W., Yu J. S. Global attractivity and uniform persistence in Nicholson’s blowflies. Differ. Equ. Dyn. Syst. 1994. Vol. 2, no. 1, P. 11-18
  43. So J. W-H., Wu J. Topological dimensions of global attractors for semilinear PDE's with delays. Bull. Aust. Math. Soc. 1991. Vol. 43, no. 3, P. 407-422
  44. Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, 1997
  45. Zelik S. Attractors. Then and now. Uspekhi Mat. Nauk. 2023. Vol. 78, no. 4, P. 53-198

Full text (pdf)