On the Recent Progress in Effective Dimension Estimates for Delay Equations
Автор(ы):
Mikhail Mikhailovich Anikushin
PhD, senior researcher at the Department
of Applied Cybernetics, Faculty of Mathematics and Mechanics,
St Petersburg University
demolishka@yandex.ru
Andrey Olegovich Romanov
PhD student at the Department
of Applied Cybernetics, Faculty of Mathematics and Mechanics,
St Petersburg University
romanov.andrey.twai@yandex.ru
Аннотация:
We discuss the recent progress on studying volume contraction for linear cocycles generated by delay equations obtained by the authors.
On the basis, we use adapted metrics constructed explicitly or via the Frequency Theorem. In contrast to many existing results,
this approach allows to provide effective estimates in terms of the system parameters (including delays).
We illustrate the exposed general results by means of the nonautonomous and classical Nicholson blowflies models, where effective dimension estimates
for global attractors and robust conditions for the global stability are obtained.
Ключевые слова
- Delay equations
- Dimension estimates
- Global stability
- Nicholson blowflies
- Volume contraction
Ссылки:
- Anikushin M. M. Variational description of uniform Lyapunov exponents via adapted metrics on exterior products. arXiv preprint. 2024. arXiv:2304. 05713
- Anikushin M. M. Spectral comparison of compound cocycles generated by delay equations in Hilbert spaces. arXiv preprint. 2024. arXiv:2302. 02537
- Anikushin M. M., Romanov A. O. Frequency conditions for the global stability of nonlinear delay equations with several equilibria. arXiv preprint. 2024. arXiv:2306. 04716
- Anikushin M. M. Frequency theorem and inertial manifolds for neutral delay equations. J. Evol. Equ. 2023. Vol. 23, no. 66
- Anikushin M. M., Romanov A. O. Hidden and unstable periodic orbits as a result of homoclinic bifurcations in the Suarez-Schopf delayed oscillator and the irregularity of ENSO. Phys. D: Nonlinear Phenom. 2023. Vol. 445, 133653
- Anikushin M. M. Nonlinear semigroups for delay equations in Hilbert spaces, inertial manifolds and dimension estimates. Differ. Uravn. Protsessy Upravl. 2022. no 4
- Anikushin M. M. Inertial manifolds and foliations for asymptotically compact cocycles in Banach spaces. arXiv preprint. 2022. arXiv:2012. 03821
- Anikushin M. M. Frequency theorem for parabolic equations and its relation to inertial manifolds theory. J. Math. Anal. Appl. 2021. Vol. 505, no. 1, 125454
- Anikushin M. M. Almost automorphic dynamics in almost periodic cocycles with one-dimensional inertial manifold. Differ. Uravn. Protsessy Upr. 2021. No. 2, P. 13-48 (In Russ. )
- Anikushin M. M. On the Liouville phenomenon in estimates of fractal dimensions of forced quasi-periodic oscillations. Vestn. St. Petersbg. Univ., Math. 2019. Vol. 52, no. 3. P. 234-243
- Anikushin M. M., Reitmann V., Romanov A. O. Analytical and numerical estimates of the fractal dimension of forced quasiperiodic oscillations in control systems. Differ. Uravn. Protsessy Upr. 2019. no. 2, P. 162-183 (In Russ. )
- Ansmann G. Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE. Chaos. 2018. Vol. 28, no. 4, 043116
- Carvalho A. N., Langa J. A., Robinson J. C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. Springer Science & Business Media, 2012
- Chepyzhov V. V., Ilyin A. A. On the fractal dimension of invariant sets; applications to Navier-Stokes equations. Discrete Contin. Dyn. Syst. 2004. Vol. 10, no. 1& 2, P. 117-136
- Chicone C. Inertial flows, slow flows, and combinatorial identities for delay equations. J. Dyn. Diff. Equat. 2004. Vol. 16, no. 3, P. 805-831
- Chicone C. Inertial and slow manifolds for delay equations with small delays. J. Differ. Equations. 2003. Vol 190, no. 2. P. 364-406
- Chueshov I. Dynamics of Quasi-stable Dissipative Systems. Berlin: Springer, 2015
- Gyö ri I., Trofimchuk S. Global attractivity in !!!! ERROR!!! IMAGE IS NOT ALLOWED!. Dynam. Syst. Appl. 1999. Vol. 8, P. 197-210
- Gurney W. S. C., Blythe S. P., Nisbet R. M. Nicholson's blowflies revisited. Nature. 1980. Vol. 287, no. 5777, P. 17-21
- Hale J. K. Theory of Functional Differential Equations. Springer-Verlag, New York, 1977
- Hastings A., Hom C. L., Ellner S., Turchin P., Godfray H. C. J. Chaos in ecology: is mother nature a strange attractor? Annu. Rev. Ecol. Evol. Syst. 1993. Vol. 24, no. 1, 1-33
- Hu W., Caraballo T. Hausdorff and fractal dimensions of attractors for functional differential equations in Banach spaces. J. Differ. Equ. 2024. Vol. 385, P. 395-423
- Jingwen L. Global attractivity in Nicholson’s blowflies. Appl. Math. 1996. Vol. 11, no 4., P. 425-434
- Kulenović M. R. S., Ladas G. F., Sficas Y. G. Global attractivity in Nicholson's blowflies. Appl. Anal. 1992. Vol. 43, no. 1-2, P. 109-124
- Kuznetsov N. V., Reitmann V. Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Switzerland: Springer International Publishing AG, 2021
- Kuznetsov N. V., Mokaev T. N., Kuznetsova O. A., Kudryashova E. V. The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension. Nonlinear Dyn. 2020. Vol. 102, P. 713-732
- Kuznetsov N. V. The Lyapunov dimension and its estimation via the Leonov method. Phys. Lett. A. 2016. Vol. 380, no. 25-26, P. 2142-2149
- Leonov G. A., Kuznetsov N. V., Korzhemanova N. A., Kusakin D. V. Lyapunov dimension formula for the global attractor of the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 2016. Vol. 41, P. 84-103
- Leonov G. A. Lyapunov dimension formulas for Lorenz-like systems. Doklady Mathematics. 2016. Vol. 93, no. 3
- Leonov G., Mokaev T. Lyapunov dimension formula for the attractor of the Glukhovsky-Dolzhansky system. Doklady Mathematics. 2016. Vol. 93, no. 1
- Leonov G. A., Alexeeva T. A., Kuznetsov N. V. Analytic exact upper bound for the Lyapunov dimension of the Shimizu-Morioka system. Entropy. 2015. Vol. 17, no. 7, 5101
- Leonov G. A. Lyapunov dimensions formulas for Hé non and Lorenz attractors. Alg. Anal. 2001. Vol. 13, P. 155-170 (In Russ. ) English transl. St. Petersburg Math. J. 2002. Vol. 13, no. 3, P. 453-464
- Leonov G. A., Boichenko V. A. Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors. Acta Appl. Math. 1992. Vol 26., no. 1, P. 1-60
- Li M. Y., Muldowney J. S. A geometric approach to global-stability problems. SIAM J. Math. Anal. 1996. Vol. 27, no. 4, P. 1070-1083
- Li M. Y., Muldowney J. S. Lower bounds for the Hausdorff dimension of attractors. J. Dyn. Differ. Equ. 1995. Vol. 7, no. 3, P. 457-469
- Liz E., Tkachenko V., Trofimchuk S. A global stability criterion for scalar functional differential equations. SIAM J. Math. Anal. 2003. Vol. 35, no. 3, 596-622
- Louzeiro M., Kawan C., Hafstein S., Giesl P., Yuan J. A Projected Subgradient Method for the Computation of Adapted Metrics for Dynamical Systems. SIAM J. Appl. Dyn. Syst. 2022. Vol. 21, no. 4, P. 2610-2641
- Mallet-Paret J., Nussbaum R. D. Tensor products, positive linear operators, and delay-differential equations. J. Dyn. Diff. Equat. 2013. Vol. 25, P. 843-905
- Mallet-Paret J., Sell G. R. The Poincaré -Bendixson theorem for monotone cyclic feedback systems with delay. J. Differ. Equations. 1996. Vol. 125, P. 441-489
- Mallet-Paret J. Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. Differ. Equations. 1976. Vol. 22, no. 2, P. 331-348
- Smith R. A. Some applications of Hausdorff dimension inequalities for ordinary differential equations. P. Roy. Soc. Edinb. A. 1986. Vol. 104, no. 3-4, P. 235-259
- So J. W., Yu J. S. Global attractivity and uniform persistence in Nicholson’s blowflies. Differ. Equ. Dyn. Syst. 1994. Vol. 2, no. 1, P. 11-18
- So J. W-H., Wu J. Topological dimensions of global attractors for semilinear PDE's with delays. Bull. Aust. Math. Soc. 1991. Vol. 43, no. 3, P. 407-422
- Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, 1997
- Zelik S. Attractors. Then and now. Uspekhi Mat. Nauk. 2023. Vol. 78, no. 4, P. 53-198