ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Nonlinear Problem Involving the Fractional P(x)-Laplacian Operator by Topological Degree

Author(s):

Ait Hammou Mustapha

Doctor of Applied Mathematics, Professor in the Department of Mathematics, Laboratory of Mathematical Analysis and Applications, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

mustapha.aithammou@usmba.ac.ma

Abstract:

This paper is concerned with the study of a nonlinear problem involving the fractional p(x)-Laplacian operator. By means of the Berkovits degree theory, we prove the existence of nontrivial weak solutions for this problem. The appropriate functional framework for this problem is the fractional Sobolev spaces with variable exponent.

Keywords

References:

  1. Alsaedi R. Perturbed subcritical Dirichlet problems with variable exponents. Electron. J. Differential Equations, 2016, 295, 1-12
  2. Applebaum D. Levy processes and stochastic calculus, Second edition. Cambridge Studies in Advanced Mathematics, Vol. 116, Cambridge University Press, Cambridge, 2009
  3. Azroul E., Benkirane A., Shimi M. Eigenvalue problems involving the fractional p(x)-Laplacian operator. Adv. Oper. Theory, 2019, 4 (2), 539-555
  4. Bahrouni A., Ho K. Y. Remarks on eigenvalue problems for fractional p(·)-Laplacian. Asymptot. Anal., 2021, 123 (1-2), 139-156
  5. Bahrouni A., Radulescu V. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst., 2018, 11, 379-389
  6. Berkovits J. Extension of the Leray-Schauder degree for abstract Hammerstein type mappings. J. Differential Equations, 2007, 234, 289-310
  7. Bisci G. M., Radulescu V., Servadi R. Variational methods for nonlocal fractional problems, With a foreword by Jean Mawhin. Encyclopedia of Mathematics and its Applications, Vol. 162, Cambridge University Press, Cambridge, 2016
  8. Bucur C., Valdinoci E. Nonlocal diffusion and applications. Lecture Notes of the Unione Matematica Italiana, Vol. 20, Springer, [Cham], Unione Matematica Italiana, Bologna, 2016
  9. Caffarelli L. Nonlocal diffusions, drifts and games. Nonlinear partial differential equations, Abel Symp., Vol. 7: 37{52, Springer, Heidelberg, 2012
  10. Chen Y., Levine S., Rao M. Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math., 2006, 66, 1383-1406
  11. Fan X. L., Zhao D. On the Spaces L^(p(x))(Omega) and W^(m,p(x)). J. Math. Anal. Appl., 2001, 263, 424-446
  12. Ho K., Kim Y. H. A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(·)-Laplacian. Nonlinear Anal., 2019, 188, 179-201
  13. Ho K., Kim Y. H. The concentration-compactness principles for W^(s,p(.,.))(R^N) and application. Adv. Nonlinear Anal., 2021, 10, 816-848
  14. Kaufmann U., Rossi J. D., Vidal R. Fractional Sobolev spaces with variable exponents and fractional p(x)− Laplacians. Electron. J. Qual. Theory Differ. Equ., 2017, 76, 1-10
  15. Kim I. S., Hong, S. J. A topological degree for operators of generalized (S+) type. Fixed Point Theory and Appl., 2015, 2015:194
  16. Kovacik O., Rakosnik J. On spaces L^(p(x)) and W^(1,p(x)). Czechoslovak Math. J., 1991, 41, 592-618
  17. Zeidler E. Nonlinear Functional Analysis and its Applications. II/B: Nonlinear monotone Operators, Springer, New York, 1990
  18. Zhang C., Zhang X. Renormalized solutions for the fractional p(x)-Laplacian equation with L1 data. Nonlinear Anal., 2020, 190, 111610
  19. Zhao D., Qiang W. J., Fan X. L. On generalized Orlicz spaces L^(p(x))(Omega). J. Gansu Sci., 1996, 9 (2), 1-7

Full text (pdf)