ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Calculation of the Invariant Decomposition of the Tangent Space

Author(s):

Georgii Sergeevich Osipenko

Doctor of Physical and Mathematical Sciences, Full Professor of the Moscow State University named by M.V. Lomonosov, Full Professor of the Department of Computational Mathematics in the Sevastopol Branch of MGU

george.osipenko@mail.ru

Irina Alexeevna Andreeva

Candidate of Physical and Mathematical Sciences, Docent of the Higher Mathematics Department in the Peter the Great St.Petersburg Polytechnic University (SPbPU)

irandr@inbox.ru

Abstract:

A discrete dynamic system generated by a diffeomorphism is considered. The task of constructing an invariant decomposition of the tangent space is set. This task is reduced to calculating the components of a chain recurrent set on a projective bundle. A computer-oriented tool for such a calculation is a symbolic image of a dynamic system, which is an oriented graph. The components of the chain recurrent set are determined by calculating the components of the strong connectivity of the symbolic image. A nontrivial example of calculating the desired tangent space decomposition is given.

Keywords

References:

  1. Alekseev, V. M. Symbolic dynamics. Eleventh Mathematical School, ed. Institute of Mathematics of the Academy of Sciences of the Ukrainian SSR, Kiev, 1976 (in Russ. )
  2. Bronstein, I. U. Nonautonomous dynamical systems. Stiinza, Chisinau, 1984
  3. Cormen, Thomas H., Leiserson, Charles I., Rivest, Ronald L., Stein, Clifford. Algorithms: Construction and analysis. Ed. Williams, Moscow, 2011 (in Russ. ) Translated from: Cormen, Thomas H., Leiserson, Charles I., Rivest, Ronald L., Stein, Clifford. Introduction to Algorithms. MIT Press, Cambridge, 2002
  4. Osipenko, G. S. On the symbolic image of a dynamic system. Boundary value problems. Collection of Works, Perm. 1983, 101-105 (in Russ. )
  5. Osipenko, G. S., Ampilova, N. B. Introduction to symbolic analysis of dynamic systems. St. Petersburg University Publishing House, 2005 (in Russ. )
  6. Osipenko, G. S. Computer-oriented methods of dynamic systems. Moscow, ed. INFRA-M, 2024 (in Russ. )
  7. Osipenko, G. S. Lyapunov exponents and invariant measures on a projective bundle. Mathematical Notes, vol. 101, № 4, 549-561, 2017
  8. Osipenko, G. S. The spectrum of the averaging of a function over pseudo-trajectories of a dynamical system. Mat. Sb., Vol. 209, № 8, pp. 114 - 137, 2018
  9. Osipenko, G. S. Encoding of trajectories and invariant measures. Mat. Sb., Vol. 211, № 7, 151-176, 2020
  10. Petrenko, E. I. Computer research of dynamic systems based on the symbolic image method. PhD thesis. St. Petersburg University, 2009 (in Russ. )
  11. Pilyugin, S. Y. Introduction to rough systems of differential equations. LSU, L., 1988 (in Russ. )
  12. Sedgwick R. Fundamental algorithms in !!!! ERROR!!! IMAGE IS NOT ALLOWED!. Algorithms on graphs. LLC DiaSoftUP, St. Petersburg, 2002
  13. Avrutin, V., Levi, P., Schanz, V., Fundinger, D., and Osipenko, G. Investigation of dynamical systems using symbolic images: efficient implementation and applications. International J. of Bifurcation and Chaos. v. 16, №. 12, 2006, 3451-3496
  14. Colonius, F., and Kliemann, W. The Dynamics of Control. Burkhauser, 2000
  15. Fundinger, D., Lindstr!!!! ERROR!!! IMAGE IS NOT ALLOWED! m, T., Osipenko, G. S. On the appearance of multiple attractors in discrete food-chains. Applied Mathematics and Computation, 184(2), 429-444, 2007
  16. Hsu, C. S. Cell-to-Cell Mapping. Springer-Verlag, N. Y., 1987
  17. Ikeda, K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Comm. V. 30, 257-261, 1979
  18. Douglas, Lind, Brian, Marcus. An introduction to symbolic dynamics and coding. Cambridge University Press, 1995
  19. Osipenko, George. Computer-oriented tests for hyperbolicity and structural stability of dynamical system. Differential Equations and Control Processes, № 3, 2023. Electronic Journal, http://di_journal.spbu.ru/ https://doi.org/10.21638/11701/spbu35.2023.302
  20. Osipenko, George. Dynamical systems, Graphs, and Algorithms. Lectures Notes in Mathematics, 1889, Springer, Berlin, 2007
  21. Osipenko, G. S. Localization of the chain recurrent set by symbolic dynamics methods. Proceedings of Dynamics Systems and Applications. V. 1. Dynamic Publishers Inc., 227 - 282, 1994
  22. Osipenko, G. S., Romanovsky, J. V., Ampilova, N. B., and Petrenko, E. I. Computation of the Morse Spectrum. Journal of Mathematical Sciences, v. 120:2, 1155 - 1166, 2004
  23. Osipenko, G. Center manifold. Encyclopedia of Complexity and Systems Science. Robert A. Meyers (Ed. ) N. Y., Berlin: Springer, 936-951, 2009
  24. Osipenko, George. Symbolic images and invariant measures of dynamical systems. Ergodic Theory and Dynamical Systems, v. 30, 1217 - 1237, 2010
  25. Sacker, R. and Sell, G. Existence of dichotomies and invariant splitting for linear differential systems I-III. J. Diff. Eq., v. 15, №. 3, 429-458 (1974); v. 22, №. 2, 476-522, 1976
  26. Selgrade, J. Isolated invariant sets for flows on vector bundles. Trans. Amer. Math. Soc., v. 203, 359-390, 1975
  27. Shub, M. Stabilit!!!! ERROR!!! IMAGE IS NOT ALLOWED! globale de syst!!!! ERROR!!! IMAGE IS NOT ALLOWED! mes denamiques. Ast!!!! ERROR!!! IMAGE IS NOT ALLOWED! risque, v. 56, 1-21, 1978
  28. Tarjan, R. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1, 146-160, 1972
  29. Tarjan, R. Algorithm design. Communications of the ACM, v. 30 №. 3, 204-212, 1987
  30. Van der Pol, B. On relaxation-oscillations. The London, Edinburgh and Dublin Phil. Mag. J. of Sci., 2(7), 978—992, 1927

Full text (pdf)