ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Exact Formula for Pull-in Range of Phase-locked Loop with Proportional-integrating Filter and Piecewise-linear Phase Detector Characteristic

Author(s):

Nikolay Vladimirovich Kuznetsov

Doctor of Physical and Mathematical Sciences, Head of the Department
of Applied Cybernetics, St. Petersburg State University,
Head of the Laboratory of Information and Control Systems of the Institute
for Problems of Mechanical Engineering of the Russian Academy of Sciences (IPMash RAS)

nkuznetsov239@mail.ru

Mikhail Yurievich Lobachev

Ph.D., Researcher of the Department of Applied Cybernetics, St. Petersburg State University

Abstract:

The paper develops an efficient approach for accurately determining the pull-in range of a phase-locked loop with a proportional-integrating filter and a continuous piecewise linear phase detector characteristic. This approach makes it possible to derive an analytical formula for determining the pull-in range and obtain explicit conservative estimates and asymptotic values of the pull-in range. Within the framework of the theory of hidden oscillations, this approach provides a complete solution to the problem of determining the boundary of global stability and revealing its hidden parts corresponding to the nonlocal birth of hidden oscillations.

Keywords

References:

  1. Karimi-Ghartemani M. Enhanced Phase-Locked Loop Structures for Power and Energy Applications. John Wiley & Sons, 2014
  2. Kaplan E., Hegarty C. Understanding GPS/GNSS: Principles and Applications. 3rd edition. Artech House, 2017
  3. Middlestead R. Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications. Wiley, 2017
  4. Shakhgil’dyan V., Lyakhovkin A. Sistemy fazovoi avtopodstroiki chastoty (in Russian). 2nd edition. Moscow: Svyaz’, 1972
  5. Leonov G., Kuznetsov N. Nonlinear Mathematical Models of Phase-Locked Loops. Stability and Oscillations. Cambridge Scientific Publishers, 2014
  6. Leonov G., Reitmann V., Smirnova V. Nonlocal Methods for Pendulum-like Feedback Systems. Stuttgart-Leipzig: Teubner, 1992
  7. Leonov G. Phase-locked loops. Theory and application // Automation and Remote Control. 2006. Vol. 67, no. 10. P. 1573-1609
  8. Tricomi F. Integrazione di un’equazione differenziale presentatasi in elettrotecnica // Annali della Scuola Normale Superiore de Pisa (in Italian). 1933. Vol. 2, no. 2. P. 1-20
  9. Kapranov M. Locking band for phase-locked loop // Radiofizika (in Russian). 1956. Vol. 11, no. 12. P. 37-52
  10. Gubar’ N. Investigation of a piecewise linear dynamical system with three parameters // Journal of Applied Mathematics and Mechanics. 1961. Vol. 25, no. 6. P. 1519-1535
  11. Cahn C. Piecewise linear analysis of phase-lock loops // IRE Transactions on Space Electronics and Telemetry. 1962. no. 1. P. 8-13
  12. Andronov A., Vitt A., Khaikin S. Theory of Oscillators. New York, NY, USA: Pergamon Press, 1966. [Transl. from Russian: 1959, Gosudarstvennoye Izdatel’stvo Fiziko-Matematicheskoi Literatury]
  13. Andronov A., Chaikin C. Theory of Oscillations. Princeton, NJ, USA:Princeton University Press, 1949. [Transl. from Russian: 1937, ONTI NKTP SSSR]
  14. Shakhtarin B. Study of a piecewise-linear system of phase-locked frequency control // Radiotechnica and Electronika (in Russian). 1969. Vol. 14, no. 8. P. 1415-1424
  15. Belyustina L., Brykov V., Kiveleva K., Shalfeev V. On the magnitude of the locking band of a phase-shift automatic frequency control system with a proportionally integrating filter // Radiophysics and Quantum Electronics. 1970. Vol. 13, no. 4. P. 437-440
  16. Blanchard A. Phase-Locked Loops. Wiley, 1976
  17. Egan W. Phase-Lock Basics. 2nd edition. New York: John Wiley & Sons, 2007
  18. Kuznetsov N., Lobachev M., Yuldashev M. et al. Piecewise-linear analysis of the pull-in range for second-order PLLs // 2023 European Control Conference Proceedings. 2023. P. 2083-2088. https://doi.org/10.23919/ECC57647.2023.10178196
  19. Kuznetsov N., Lobachev M., Kudryashova E. et al. The Viterbi problem on coincidence of phase-locked loop lock-in, pull-in, and hold-in ranges // Nonlinear Dynamics. 2025. https://doi.org/10.1007/s11071-025-11040-3
  20. Pervachev S. Lock In Range of Phase Synchronized A. F. C. // Radio Engineering and Electronic Physics. 1963. Vol. 8, no. 2. P. 287-290. [Transl. from Russian: Radiotechnica and Electronika, vol. 8, no. 2, pp. 334-337, 1963]
  21. Protonotarios E. Pull-in performance of a piecewise linear phase-locked loop // IEEE Transactions on Aerospace and Electronic Systems. 1969. Vol. AES-5, no. 3. P. 376-386
  22. Safonov V. On the influence of a sawtooth phase detector characteristic form on the pull-in range of PLL // Radiotekhnika (in Russian). 1969. Vol. 24, no. 6. P. 76-80
  23. Shakhtarin B. Analysis of Piecewise-Linear Systems with Phase Control (in Russian). Moscow, Russia: Mashinostroenie, 1991
  24. Shakhtarin B. Synchronization System Analysis Using the Averaging Method (in Russian). Moscow, Russia: Radio i Svyaz’, 1999
  25. Belyustina L., Kiveleva K., Shalfeev V. Use of computers for calculation of the capture band of nonlinear phase-automatic-frequency-control systems // Radio Engineering. 1972. Vol. 27, no. 7. P. 86-89. [Transl. from Russian: Radiotechnica, vol. 27, no. 7, pp. 36-39, 1972]
  26. Matrosov V. Systems Modeling: Analysis of Dynamics and Calculation of Dynamic Characteristics of a PLL System with a Proportional-Integral Filter: Study Guide (in Russian). Nizhny Novgorod, Russia: Izdatel’stvo Nizhegorodskogo gosuniversiteta, 2012. http://old.rf.unn.ru/rus/ktk/sites/default/files/manual_matrosov_modelling_fap.pdf
  27. Belyustina L., Belykh V. A quolitative investigation of a dynamic system on a cylinder // Differential Equations. 1973. Vol. 9, no. 3. P. 309-319. [Transl. from Russian: Differentsial’nye Uravneniya, vol. 9, no. 3, pp. 403-415, 1973]
  28. Bautin N. Qualitative study of a certain equation of the theory of phase automatic frequency control // Journal of Applied Mathematics and Mechanics. 1970. Vol. 34, no. 5. P. 812-821. [Transl. from Russian: Prikladnaia matematika i mekhanika, vol. 34, no. 5, pp. 850-860, 1970]
  29. Lindsey W. Synchronization systems in communication and control. New Jersey: Prentice-Hall, 1972
  30. Mengali U. Acquisition behavior of generalized tracking systems in the absence of noise // IEEE Transactions on Communications. 1973. Vol. 21, no. 7. P. 820-826
  31. Endo T. A review of chaos and nonlinear dynamics in phase-locked loops // Journal of the Franklin Institute. 1994. Vol. 331, no. 6. P. 859-902
  32. Best R. Phase-Locked Loops: Design, Simulation and Application. 6th edition. McGraw-Hill, 2007. P. 490
  33. Stensby J. The separatrix cycle for a class of phase-locked loops // Proceedings of the Twenty-Seventh Southeastern Symposium on System Theory / IEEE. 1995. P. 154-158
  34. Stensby J. Phase-Locked Loops: Theory and Applications. Taylor & Francis, 1997. P. 382
  35. Stensby J. An exact formula for the half-plane pull-in range of a PLL // Journal of the Franklin Institute. 2011. Vol. 348, no. 4. P. 671-684
  36. Brunk M., Rosenkranz W. The pull-in range of imperfect second-order phase- locked loops with piecewise linear phase-detector characteristics // AEU. 1979. Vol. 33. P. 484-490
  37. Phase-Locked Loops (in Russian) / Ed. by V. Shakhgil’dyan, L. Belyustina. Moscow, USSR: Radio i Svyaz’, 1982
  38. Bautin N., Leontovich E. Methods and Techniques for the Qualitative Investigation of Dynamical Systems in a Plane (in Russian). 2nd edition. Moscow, USSR: Nauka, 1990
  39. Kapranov M. Elements of the Theory of Phase-Locked Loops (in Russian). Moscow, Russia: Izdatel’stvo MEI, 2006
  40. Shalfeev V., Matrosov V. Nonlinear dynamics of phase synchronization systems (in Russian). Nizhny Novgorod, Russia: Izdatel’stvo Nizhegorodskogo gosuniversiteta, 2013
  41. Leonov G., Seledzhi S. The Phase-Locked Loop for Array Processors. St. Petersburg: Nevskii dialect (in Russian), 2002
  42. Margaris N. Theory of the Non-Linear Analog Phase Locked Loop. New Jersey: Springer Verlag, 2004. P. 287
  43. Harb B., Al-Ajlouni A., Eyadeh A. A Collocation-Based Algorithm for Analyzing Bifurcations in Phase Locked Loops with Tanlock and Sawtooth Phase Detectors // Mathematical Problems in Engineering. 2018. Vol. 2018. P. 1-7
  44. Harb B., Jaradat E. Computing the Pull-in Range of Phase Locked Loop Using Particle Swarm Optimization // 2023 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS) / IEEE. 2023. P. 267-271
  45. Leonov G., Kuznetsov N. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits // International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. 2013. Vol. 23, no. 1. art. num. 1330002. https://doi.org/10.1142/S0218127413300024
  46. Dudkowski D., Jafari S., Kapitaniak T. et al. Hidden attractors in dynamical systems // Physics Reports. 2016. Vol. 637. P. 1-50
  47. Kuznetsov N., Leonov G., Yuldashev M., Yuldashev R. Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE // Communications in Nonlinear Science and Numerical Simulation. 2017. Vol. 51. P. 39-49. https://doi.org/10.1016/j.cnsns.2017.03.010
  48. Kuznetsov N., Yuldashev M., Yuldashev R. et al. Comments on van Paemel’s mathematical model of charge-pump phase-locked loop // Differencialnie Uravnenia i Protsesy Upravlenia (Differential Equations and Control Processes). 2019. no. 1. P. 109-120. https://diffjournal.spbu.ru/pdf/19107-jdecp-kuznetsov.pdf
  49. Kuznetsov N. Theory of hidden oscillations and stability of control systems // Journal of Computer and Systems Sciences International. 2020. Vol. 59, no. 5. P. 647-668
  50. Blagov M., Kuznetsov N., Lobachev M. et al. Nonlinear analysis and synthesis of phase-locked loop system: Kapranov conjecture and hidden oscillations // Materialy 15-j mul’tikonferencii po problemam upravleniya (in Russian). 2022. С. 232-233. http://www.elektropribor.spb.ru/upload/medialibrary/3ed/Sbornik-MTUiP_2022.pdf
  51. Kuznetsov N., Arseniev D., Blagov M. et al. The Gardner problem and cycle slipping bifurcation for type-2 phase-locked loops // International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. 2022. Vol. 32, no. 9. art. num. 2250138. https://doi.org/10.1142/S0218127422501383
  52. Kuznetsov N., Lobachev M., Mokaev T. Hidden boundary of global stability in a counterexample to the Kapranov conjecture on the pull-in range // Doklady Mathematics. 2023. Vol. 108, no. 1. P. 300-308
  53. Gardner F. Phaselock Techniques. 3rd edition. New York: John Wiley & Sons, 2005. P. 550
  54. Kolumban G. Phase-locked loops // Encyclopedia of RF and Microwave Engineering (Ed. Rodenbeck., C. T. ). New York, NY, USA: Wiley, 2024
  55. Leonov G., Kuznetsov N., Yuldashev M., Yuldashev R. Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical definitions and limitations of classical theory // IEEE Transactions on Circuits and Systems-I: Regular Papers. 2015. Vol. 62, no. 10. P. 2454-2464
  56. Best R., Kuznetsov N., Leonov G. et al. Tutorial on dynamic analysis of the Costas loop // IFAC Annual Reviews in Control. 2016. Vol. 42. P. 27-49. https://doi.org/10.1016/j.arcontrol.2016.08.003
  57. Kuznetsov N., Lobachev M., Yuldashev M. et al. The Gardner problem on the lock-in range of second-order type 2 phase-locked loops // IEEE Transactions on Automatic Control. 2023. Vol. 68, no. 12. P. 7436-7450. https://doi.org/10.1109/TAC.2023.3277896
  58. Kuznetsov N., Lobachev M., Yuldashev M., Yuldashev R. Bifurcation analysis of the boundary of global stability of type 1 PLL // 2023 European Control Conference Proceedings. 2023. P. 1107-1112. https://doi.org/10.23919/ECC57647.2023.10178377
  59. Kuznetsov N., Lobachev M., Yuldashev M., Yuldashev R. On the pull-in and hold-in ranges of type 1 PLL with piecewise-linear phase detector characteristic // IFAC-PapersOnLine (22th IFAC World Congress). 2023. Vol. 56, no. 2. P. 6411-6416. https://doi.org/10.1016/j.ifacol.2023.10.843
  60. Leonov G., Kuznetsov N., Kiseleva M., Mokaev R. Global problems for differential inclusions. Kalman and Vyshnegradskii problems and Chua circuits // Differencialnie Uravnenia i Protsesy Upravlenia (Differential Equations and Control Processes). 2017. no. 4. P. 1-52
  61. Kuznetsov N., Lobachev M. Analysis of discontinous phase-locked loop models // XIV Vserossiyskoe Soveshchanie po Problemam Upravleniya VSPU-2024: Trudy (in Russian). 2024

Full text (pdf)