Exact Formula for Pull-in Range of Phase-locked Loop with Proportional-integrating Filter and Piecewise-linear Phase Detector Characteristic
Author(s):
Nikolay Vladimirovich Kuznetsov
Doctor of Physical and Mathematical Sciences, Head of the Department
of Applied Cybernetics, St. Petersburg State University,
Head of the Laboratory of Information and Control Systems of the Institute
for Problems of Mechanical Engineering of the Russian Academy of Sciences (IPMash RAS)
nkuznetsov239@mail.ru
Mikhail Yurievich Lobachev
Ph.D., Researcher of the Department of Applied Cybernetics, St. Petersburg State University
Abstract:
The paper develops an efficient approach for accurately determining the pull-in range of a phase-locked loop with a proportional-integrating filter and a continuous piecewise linear phase detector characteristic. This approach makes it possible to derive an analytical formula for determining the pull-in range and obtain explicit conservative estimates and asymptotic values of the pull-in range. Within the framework of the theory of hidden oscillations, this approach provides a complete solution to the problem of determining the boundary of global stability and revealing its hidden parts corresponding to the nonlocal birth of hidden oscillations.
Keywords
- global stability boundary
- Gubar-Cahn scenario
- Kapranov conjecture
- nonlocal birth of hidden oscillations
- phase-locked loop
- pull-in range
References:
- Karimi-Ghartemani M. Enhanced Phase-Locked Loop Structures for Power and Energy Applications. John Wiley & Sons, 2014
- Kaplan E., Hegarty C. Understanding GPS/GNSS: Principles and Applications. 3rd edition. Artech House, 2017
- Middlestead R. Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications. Wiley, 2017
- Shakhgil’dyan V., Lyakhovkin A. Sistemy fazovoi avtopodstroiki chastoty (in Russian). 2nd edition. Moscow: Svyaz’, 1972
- Leonov G., Kuznetsov N. Nonlinear Mathematical Models of Phase-Locked Loops. Stability and Oscillations. Cambridge Scientific Publishers, 2014
- Leonov G., Reitmann V., Smirnova V. Nonlocal Methods for Pendulum-like Feedback Systems. Stuttgart-Leipzig: Teubner, 1992
- Leonov G. Phase-locked loops. Theory and application // Automation and Remote Control. 2006. Vol. 67, no. 10. P. 1573-1609
- Tricomi F. Integrazione di un’equazione differenziale presentatasi in elettrotecnica // Annali della Scuola Normale Superiore de Pisa (in Italian). 1933. Vol. 2, no. 2. P. 1-20
- Kapranov M. Locking band for phase-locked loop // Radiofizika (in Russian). 1956. Vol. 11, no. 12. P. 37-52
- Gubar’ N. Investigation of a piecewise linear dynamical system with three parameters // Journal of Applied Mathematics and Mechanics. 1961. Vol. 25, no. 6. P. 1519-1535
- Cahn C. Piecewise linear analysis of phase-lock loops // IRE Transactions on Space Electronics and Telemetry. 1962. no. 1. P. 8-13
- Andronov A., Vitt A., Khaikin S. Theory of Oscillators. New York, NY, USA: Pergamon Press, 1966. [Transl. from Russian: 1959, Gosudarstvennoye Izdatel’stvo Fiziko-Matematicheskoi Literatury]
- Andronov A., Chaikin C. Theory of Oscillations. Princeton, NJ, USA:Princeton University Press, 1949. [Transl. from Russian: 1937, ONTI NKTP SSSR]
- Shakhtarin B. Study of a piecewise-linear system of phase-locked frequency control // Radiotechnica and Electronika (in Russian). 1969. Vol. 14, no. 8. P. 1415-1424
- Belyustina L., Brykov V., Kiveleva K., Shalfeev V. On the magnitude of the locking band of a phase-shift automatic frequency control system with a proportionally integrating filter // Radiophysics and Quantum Electronics. 1970. Vol. 13, no. 4. P. 437-440
- Blanchard A. Phase-Locked Loops. Wiley, 1976
- Egan W. Phase-Lock Basics. 2nd edition. New York: John Wiley & Sons, 2007
- Kuznetsov N., Lobachev M., Yuldashev M. et al. Piecewise-linear analysis of the pull-in range for second-order PLLs // 2023 European Control Conference Proceedings. 2023. P. 2083-2088. https://doi.org/10.23919/ECC57647.2023.10178196
- Kuznetsov N., Lobachev M., Kudryashova E. et al. The Viterbi problem on coincidence of phase-locked loop lock-in, pull-in, and hold-in ranges // Nonlinear Dynamics. 2025. https://doi.org/10.1007/s11071-025-11040-3
- Pervachev S. Lock In Range of Phase Synchronized A. F. C. // Radio Engineering and Electronic Physics. 1963. Vol. 8, no. 2. P. 287-290. [Transl. from Russian: Radiotechnica and Electronika, vol. 8, no. 2, pp. 334-337, 1963]
- Protonotarios E. Pull-in performance of a piecewise linear phase-locked loop // IEEE Transactions on Aerospace and Electronic Systems. 1969. Vol. AES-5, no. 3. P. 376-386
- Safonov V. On the influence of a sawtooth phase detector characteristic form on the pull-in range of PLL // Radiotekhnika (in Russian). 1969. Vol. 24, no. 6. P. 76-80
- Shakhtarin B. Analysis of Piecewise-Linear Systems with Phase Control (in Russian). Moscow, Russia: Mashinostroenie, 1991
- Shakhtarin B. Synchronization System Analysis Using the Averaging Method (in Russian). Moscow, Russia: Radio i Svyaz’, 1999
- Belyustina L., Kiveleva K., Shalfeev V. Use of computers for calculation of the capture band of nonlinear phase-automatic-frequency-control systems // Radio Engineering. 1972. Vol. 27, no. 7. P. 86-89. [Transl. from Russian: Radiotechnica, vol. 27, no. 7, pp. 36-39, 1972]
- Matrosov V. Systems Modeling: Analysis of Dynamics and Calculation of Dynamic Characteristics of a PLL System with a Proportional-Integral Filter: Study Guide (in Russian). Nizhny Novgorod, Russia: Izdatel’stvo Nizhegorodskogo gosuniversiteta, 2012. http://old.rf.unn.ru/rus/ktk/sites/default/files/manual_matrosov_modelling_fap.pdf
- Belyustina L., Belykh V. A quolitative investigation of a dynamic system on a cylinder // Differential Equations. 1973. Vol. 9, no. 3. P. 309-319. [Transl. from Russian: Differentsial’nye Uravneniya, vol. 9, no. 3, pp. 403-415, 1973]
- Bautin N. Qualitative study of a certain equation of the theory of phase automatic frequency control // Journal of Applied Mathematics and Mechanics. 1970. Vol. 34, no. 5. P. 812-821. [Transl. from Russian: Prikladnaia matematika i mekhanika, vol. 34, no. 5, pp. 850-860, 1970]
- Lindsey W. Synchronization systems in communication and control. New Jersey: Prentice-Hall, 1972
- Mengali U. Acquisition behavior of generalized tracking systems in the absence of noise // IEEE Transactions on Communications. 1973. Vol. 21, no. 7. P. 820-826
- Endo T. A review of chaos and nonlinear dynamics in phase-locked loops // Journal of the Franklin Institute. 1994. Vol. 331, no. 6. P. 859-902
- Best R. Phase-Locked Loops: Design, Simulation and Application. 6th edition. McGraw-Hill, 2007. P. 490
- Stensby J. The separatrix cycle for a class of phase-locked loops // Proceedings of the Twenty-Seventh Southeastern Symposium on System Theory / IEEE. 1995. P. 154-158
- Stensby J. Phase-Locked Loops: Theory and Applications. Taylor & Francis, 1997. P. 382
- Stensby J. An exact formula for the half-plane pull-in range of a PLL // Journal of the Franklin Institute. 2011. Vol. 348, no. 4. P. 671-684
- Brunk M., Rosenkranz W. The pull-in range of imperfect second-order phase- locked loops with piecewise linear phase-detector characteristics // AEU. 1979. Vol. 33. P. 484-490
- Phase-Locked Loops (in Russian) / Ed. by V. Shakhgil’dyan, L. Belyustina. Moscow, USSR: Radio i Svyaz’, 1982
- Bautin N., Leontovich E. Methods and Techniques for the Qualitative Investigation of Dynamical Systems in a Plane (in Russian). 2nd edition. Moscow, USSR: Nauka, 1990
- Kapranov M. Elements of the Theory of Phase-Locked Loops (in Russian). Moscow, Russia: Izdatel’stvo MEI, 2006
- Shalfeev V., Matrosov V. Nonlinear dynamics of phase synchronization systems (in Russian). Nizhny Novgorod, Russia: Izdatel’stvo Nizhegorodskogo gosuniversiteta, 2013
- Leonov G., Seledzhi S. The Phase-Locked Loop for Array Processors. St. Petersburg: Nevskii dialect (in Russian), 2002
- Margaris N. Theory of the Non-Linear Analog Phase Locked Loop. New Jersey: Springer Verlag, 2004. P. 287
- Harb B., Al-Ajlouni A., Eyadeh A. A Collocation-Based Algorithm for Analyzing Bifurcations in Phase Locked Loops with Tanlock and Sawtooth Phase Detectors // Mathematical Problems in Engineering. 2018. Vol. 2018. P. 1-7
- Harb B., Jaradat E. Computing the Pull-in Range of Phase Locked Loop Using Particle Swarm Optimization // 2023 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS) / IEEE. 2023. P. 267-271
- Leonov G., Kuznetsov N. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits // International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. 2013. Vol. 23, no. 1. art. num. 1330002. https://doi.org/10.1142/S0218127413300024
- Dudkowski D., Jafari S., Kapitaniak T. et al. Hidden attractors in dynamical systems // Physics Reports. 2016. Vol. 637. P. 1-50
- Kuznetsov N., Leonov G., Yuldashev M., Yuldashev R. Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE // Communications in Nonlinear Science and Numerical Simulation. 2017. Vol. 51. P. 39-49. https://doi.org/10.1016/j.cnsns.2017.03.010
- Kuznetsov N., Yuldashev M., Yuldashev R. et al. Comments on van Paemel’s mathematical model of charge-pump phase-locked loop // Differencialnie Uravnenia i Protsesy Upravlenia (Differential Equations and Control Processes). 2019. no. 1. P. 109-120. https://diffjournal.spbu.ru/pdf/19107-jdecp-kuznetsov.pdf
- Kuznetsov N. Theory of hidden oscillations and stability of control systems // Journal of Computer and Systems Sciences International. 2020. Vol. 59, no. 5. P. 647-668
- Blagov M., Kuznetsov N., Lobachev M. et al. Nonlinear analysis and synthesis of phase-locked loop system: Kapranov conjecture and hidden oscillations // Materialy 15-j mul’tikonferencii po problemam upravleniya (in Russian). 2022. С. 232-233. http://www.elektropribor.spb.ru/upload/medialibrary/3ed/Sbornik-MTUiP_2022.pdf
- Kuznetsov N., Arseniev D., Blagov M. et al. The Gardner problem and cycle slipping bifurcation for type-2 phase-locked loops // International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. 2022. Vol. 32, no. 9. art. num. 2250138. https://doi.org/10.1142/S0218127422501383
- Kuznetsov N., Lobachev M., Mokaev T. Hidden boundary of global stability in a counterexample to the Kapranov conjecture on the pull-in range // Doklady Mathematics. 2023. Vol. 108, no. 1. P. 300-308
- Gardner F. Phaselock Techniques. 3rd edition. New York: John Wiley & Sons, 2005. P. 550
- Kolumban G. Phase-locked loops // Encyclopedia of RF and Microwave Engineering (Ed. Rodenbeck., C. T. ). New York, NY, USA: Wiley, 2024
- Leonov G., Kuznetsov N., Yuldashev M., Yuldashev R. Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical definitions and limitations of classical theory // IEEE Transactions on Circuits and Systems-I: Regular Papers. 2015. Vol. 62, no. 10. P. 2454-2464
- Best R., Kuznetsov N., Leonov G. et al. Tutorial on dynamic analysis of the Costas loop // IFAC Annual Reviews in Control. 2016. Vol. 42. P. 27-49. https://doi.org/10.1016/j.arcontrol.2016.08.003
- Kuznetsov N., Lobachev M., Yuldashev M. et al. The Gardner problem on the lock-in range of second-order type 2 phase-locked loops // IEEE Transactions on Automatic Control. 2023. Vol. 68, no. 12. P. 7436-7450. https://doi.org/10.1109/TAC.2023.3277896
- Kuznetsov N., Lobachev M., Yuldashev M., Yuldashev R. Bifurcation analysis of the boundary of global stability of type 1 PLL // 2023 European Control Conference Proceedings. 2023. P. 1107-1112. https://doi.org/10.23919/ECC57647.2023.10178377
- Kuznetsov N., Lobachev M., Yuldashev M., Yuldashev R. On the pull-in and hold-in ranges of type 1 PLL with piecewise-linear phase detector characteristic // IFAC-PapersOnLine (22th IFAC World Congress). 2023. Vol. 56, no. 2. P. 6411-6416. https://doi.org/10.1016/j.ifacol.2023.10.843
- Leonov G., Kuznetsov N., Kiseleva M., Mokaev R. Global problems for differential inclusions. Kalman and Vyshnegradskii problems and Chua circuits // Differencialnie Uravnenia i Protsesy Upravlenia (Differential Equations and Control Processes). 2017. no. 4. P. 1-52
- Kuznetsov N., Lobachev M. Analysis of discontinous phase-locked loop models // XIV Vserossiyskoe Soveshchanie po Problemam Upravleniya VSPU-2024: Trudy (in Russian). 2024