ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
Процессы Управления

On Application of Fractal Analysis Methods to Biomedical Preparation Images


N. Ampilova

Russia, 198504, Petergof, Universitetski pr.28
Saint-Peterburg State University
Faculty of Mathematics and Mechanics

Igor P. Soloviev

St. Petersburg State University
Math.& Mech. Faculty
Computer Science Dept.

Yuri V. Shupletsov

St. Petersburg State University
Math.& Mech. Faculty
Computer Science Dept.


We investigate a possibility to apply fractal and multifractal methods to analyze some classes of biomedical preparation images. The Modified Fractal Signature method based on the calculation of the Minkovsky dimension is used. The method is alternative to well-known box dimension calculation. Generalized dimensions (Regny spectrum) and multifractal spectrum are calculated to obtain valuable features for multifractal sets. Different methods for multifractal spectrum calculation are considered. The results of numerical experiments show that for the images under study the direct calculation of multifractal spectrum (pointwise dimensions calculation and the computing thermodynamic averages) is more preferable than the obtaining the spectrum from generalized dimensions with the following using the Legendre transform.


  1. Ampilova N., Gurevich E., Soloviev I. Application of Modified Fractal Signature & Regny Spectrum Methods to the Analysis of Biomedical Preparations Images. Proc. 6 Int. Conf. CEMA11, 6-8 Oct. 2011, Sofia, Bulgaria. p. 96-100
  2. Ampilova N., Soloviev I., Shupletzov Y. Multifractal spectrum as a classification sign for biomedical preparations images. Proc. 7 Int. Conf. CEMA12, 8-10 Nov. 2012, Athens, Greece. p. 98-101
  3. Billingsley P. (1965). Ergodic theory and information. Wiley, New-York
  4. Chhabra Ashvin B, Meneveau Charles, Jensen Roderick V. and Sreenivasan K. R.. (1989) Direct determination of the f(alpha) singularities spectrum and its application to fully developed turbulence. Physical Review A, 40 (9), 5284-5294
  5. Falconer K. J. (1990). Fractal Geometry. Mathematical Foundations and Applications. John Wiley & Sons, New-York
  6. Halsey T., Jensen M. (1986). Fractal measures and their singularities. Physical Review A, 33, 1141-1151
  7. C. Pandis, A. Malamou, P. Stefaneas, P. Frangos. Applying the modified fractal signature method to image classification: some preliminary results for ISAR radar images. Proc. 7 Int. Conf. CEMA12, 8-10 Nov. 2012, Athens, Greece . p. 50-52
  8. S. Peleg, J. Naor, R. Hartley, D. Avnir. Multiple Resolution Texture Analysis and Classification. IEEE transactions on pattern analysis and machine intelligence, vol. PAMI-6, no. 4, 1984
  9. A. Rogov, K. Spiridonov. The application Regny Spectrum as an invariant of graphic image. (in Russian). Vestnik Saint-Petersburg State University, 2008, ser. 10 N. 2, p. 30-43
  10. Tang Y. Y., Hong Ma, Dihua Xi, Xiaogang Mao, Suen. C. Y. (1997). Modified Fractal Signature (MFS): A New Approach to Document Analysis for Automatic Knowledge Acquisition. IEEE Trans. Knowledge and Data Eng., 9 (5), 742-762
  11. Vstovsky G. V. (2002). Elements of information physics, MGIU, Moscow
  12. Xu Y., Ji H., Fermuller C. (2009). Viewpoint Invariant Texture Description Using Fractal Analysis. International Journal of Computer Vision, 83, 85–100

Полный текст (pdf)