ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

Метод положительно инвариантных конусов для эволюционных систем с кубическими и периодическими нелинейностями

Автор(ы):

Сергей Альбертович Попов

Санкт-Петербургский государственный университет

serg.pobeda@gmail.com

Аннотация:

Рассматривается метод положительно инвариантных конусов для эволюционных уравнений с кубической нелинейностью типа Дуффинга и с периодичекской нелинейностью. Для уравнений первого типа доказывается существование положительно инвариантного ограниченного множества. Для уравнений второго типа доказывается ограниченность решений. Приводится лемма о нестрогой разделимости квадратичных конусов в оснащенном гильбертовом пространстве.

Ссылки:

  1. Brezanskii, Yu. M., Razlozhenie po sobstvennym funktsyiam samosopriazhennykh operatorov [Decomposition on eigenfunctions of self-adjoint operators], Naukova dumka, Kiev, (1965). (In Russ. )
  2. Bliagoz, Z. U., Leonov, G. A., [Frequency-domain criteria for stability in large of nonlinear systems] Chastotnye kriterii ustoichivosti v bolshom nelineinyh sistem , Vestnik LGU, 13, (1978), 18 - 23. (In Russ. )
  3. Burkin, I. M., Iakubovich, V. A., [Frequency conditions of existence of two almost periodic solutions in a nonlinear control system] Chastotnye usloviia sushchestvovaniia dvuh pochti periodicheskih reshenii u nelineinoi sistemy avtomaticheskogo regulrovaniia, Sibirsk. mate mat. churn., 16, 5, (1975), 916 -924. (In Russ. )
  4. Leonov, G. A., [On the boundedness of the trajectories of phase systems] Ob ogranichennosti traektorij fazovych sistem, Sibirskij matemat. zurn., 15, 3, (1974), 687-692. (In Russ. )
  5. Leonov, G. A., [Phase synchronization: Theory and applications] Fazovaia sinhronizatsiia. Teoriia i prilozheniia, Avtomat. i telemeh., 67, 10, (2006), 47 - 85. (In Russ. )
  6. Leonov, G. A., Churilov, A. N., [Frequency-domain criteria for boundedness of solutions of phase systems] Chastotnye usloviia ogranichennosti reshenij fazovyh sistem, Dinamika sister, 10, (1976), 3 - 20. (In Russ. )
  7. Lichtarnikov, A. L., Jakubovich, V. A., [Frequency theorem for evolution type equations] Chastotnaja teorema dlja uravnenij evoljucionnogo tipa, Sibirsk. matemat. zhurn., 17, 5, (1976), 1069-1085. (In Russ. )
  8. Lichtarnikov, A. L., Jakubovich, V. A., [Dichotomy and stability of undetermined nonlinear systems in Hilbert spaces] Dihotomiia i absoliutnaia ustoichivost neopredelennyh nelineinyh sistem v gilbertovyh prostranstvach, Algebra i analiz, 9, 6, (1997), 132-155. (In Russ. )
  9. Br´ezis, H., Problemes unilateraux, J. Math. Pures Appl., 51, (1972), 1-168
  10. Datko, R., Extending a theorem of A. M. Liapunov to Hilbert spaces, J. Math. Pures Appl., 32, (1970), 610-616
  11. Duvant, G., Lions, J. L., Inequalities in Mechanics and Physics, Springer- Verlag, Berlin, (1976)
  12. Kalinin, Yu. N., Reitmann, V., Almost periodic solutions in control systems with monotone nonlinearities, Differential equations and control processes, 4, (2012), 40-68
  13. Leonov, G. A., Reitmann, V., Smirnova, V. B., Non-Local Methods for Pendulum-Like Feedback Systems, Teubner, Stuttgart, (1992)
  14. Lions, J. L., Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, Springer. Berlin, vol. I-III, (1972)
  15. Noldus, E., New direct Lyapunov-type method for studying synchronization problems, Automatika, 13, 2, (1977), 139-151
  16. Popov, S. A., Reitmann, V., Frequency domain conditions for finitedimensional projectors and determining observations for the set of amenable solutions, Discrete Contin. Dyn. Syst., 34, 1, (2014), 249-267
  17. Webb, G. F., A bifurcation problem for a nonlinear hyperbolic partial differential equation, SIAM Journal on Mathematical Analysis, 10, 5, (1979), 922-932
  18. Wloka, J., Partial Differential Equations, Cambridge Univ. Press. Cambridge, (1987)

Полный текст (pdf)