Анализ устойчивости функциональных уравнений типа вольтерра с помощью метода реализации
Автор(ы):
Юлия Александровна Абдалова
Математико-механический факультет
Санкт-Петербургского государственного университета
Университетская наб., 7/9, г. Санкт-Петербург
Россия, 199034
yuliannia@gmail.com
Фолькер Райтманн
198516, СПб, Петергоф, ул. Разводная д.35 кв.79
Санкт-Петербургский государственный университет
профессор кафедры прикладной кибернетики
профессор, д.ф-м.н.
vreitmann@aol.com
Аннотация:
Метод реализации операторов входа-выхода в виде
абстрактных систем управления с дискретным временем
и частотный метод используются для анализа устойчивости
и неустойчивости класса нелинейных функциональных уравнений типа Вольтера.
Для этого строится ассоциированная инвариантная относительно времени
абстрактная система управления с дискретным временем в некоторых весовых
функциональных пространствах. Рассматриваются эволюционные уравнения с
импульсно-амплитудной модуляцией, которые генерируют типичные дискретные
системы управления. Дано краткое описание абстрактного устойчивого метода
Якубовича для дискретной нелинейной системы управления, который используется в настоящей статье.
Ключевые слова
- дискретная по времени система
- метод реализации
- оператор входа-выхода
- функциональное уравнение Вольтерра
Ссылки:
- Brusin, V. A. Apparatus of abstract differential equations in the investigation of integral equations of Volterra type. Sibirski Mat. Zhurnal, 1997, XVIII, № 6, 1246-1258
- Gelig A. K. and Churilov A. N. , Stability and Oscillations of Nonlinear Pulse-Modulated Systems, Saint-Petersburg State Univ., Russia, 1993.
- Sharkov, A. V., Necessary and sufficient conditions for dichotomy and instability of control systems with an integral quadratic constraint. Vestn. Leningr. Univ., 1978
- Krein S. G. Linear Differential Equations in a Banach Space. Nauka, Moscow , 1967
- Maltseva A. A., Reitmann V. Stability in the whole and bifurcations of invariant measures in discrete-time cocycles generated by a cardiac conduction system. Differential Equations, 2014, №3, 32-54
- Peller V. V., Hankel operators and their application, Moscow-Izhevsk, R & C Dynamics , 2005
- Yakubovich, V. A., On the abstract theory of absolute stability of nonlinear systems. Vestn. Leningr. Univ, Ser. Mat., Mekh., Astron. , 1977, №13, 99-118
- Baras, J. S., Brockett, R. W., H2-functions and infinite-dimensional realization theory, SIAM 7. Control, 1975, v. 13, № 1
- Fuhrmann, P. A., On realizations of linear systems and applications to some questions of stability. Math. Syst. Th. , 1974, 8, 132-141
- Helton, J. W., Discrete time systems, operator models and scattering theory, Journal of Functional Analysis, 1974, 16, 15-38
- Kalman R. E., Arbib M., Falb P., Topics in Mathematical Systems Theory , McGraw-Hill Book company, New York , 1969
- Reitmann V., Realization theory methods for the stability investigation of non-linear infinite-dimensional input-output systems, MATHEM. BOHEMICA, 2011, v. 136, № 2, 185-194
- Reitmann V., Kantz H., Stability investigation of Volterra integral equations by realization theory and frequency-domain methods, Preprint-Series DFG-SPP , 1114, 2004, № 61
- Salamon D., Realization theory in Hilbert space, Math. Systems Theory, 1989, 21, 147-164
- Staffans O. J., Well-Posed Linear Systems, Cambridge University Press, Cambridge, 2005
- Yamamoto Y., Realization theory of infinite-dimensional linear systems, Parts I and II. Math. Systems Theory, 1981/2, v. 15, 55-77, 169-190