ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

Existence of Solutions of Ivps of Singular Multiterm Fractional Differential Equations with Impulse Effects

Автор(ы):

Xiaohui Yang

Department of Computer, Guangdong Police College, Guangzhou, 510230, P. R. China

liuyuji888@sohu.com

Yuji Liu

Department of Mathematics, Guangdong University of Fiance and Economics,
Guangzhou 510320, P. R. China

Аннотация:

This paper is devoted to studying the existence of solutions of two classes of initial value problems for nonlinear fractional differential equations with impulse effects. Firstly we transform initial value problems into integral equations. Then by constructing a special Banach space and employing fixed-point theorem, we obtain some sufficient conditions that guarantee the existence of solutions of these problems of fractional differential equations involving Caputo fractional derivatives. One equation is involved in multiple base points and the other one is involved in a single base point.

Ключевые слова

Ссылки:

  1. A. B. Basset, On the descent of a sphere in a viscous liquid, Q. J. Pure Appl. Math. 41 (1910), 369-381
  2. M. Belmekki, Juan J. Nieto, Rosana Rodriguez-Lopez, Existence of solution to a periodic boundary value problem for a nonlinear impulsive fractional differential equation, Electron. J. Qual. Theory Differ. Equ. 16 (2014), 1-27
  3. J. S. Cramer, The origins and development of the logit model, University of Amsterdam and Tinbergen Institute Manuscript, Available at http://www. cambridge. org/resources/0521815886/1208$_-$default. pdf, 2003
  4. F. Chen, Y. Zhou, Attractivity of fractional functional differential equations, Comput. Math. Appl. 62(2011) 1359-1369
  5. S. Das, P. K. Gupta and K. Vishal, Approximate approach to the Das model of fractional Logistic population growth, 5(10)(2010) 1702-1708
  6. R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co. Inc. River Edge. NJ 2000
  7. Z. Hu, W. Liu, W. Rui, Periodic boundary value problem for fractional differential equation, International Journal of Mathematics, (2012) DOI: 10. 1142/S0129167X12501005
  8. A. A. Kilbas, H. M. Srivastava, J. J. Trujjilo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies 204, Edited by J. Mill, Amsterdam Boston Heidelberg, London, 2006
  9. C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal. 74(2011) 5975-5986
  10. Y. Liu, Existence and uniqueness of solutions for initial value problems of multi-order fractional differential equations on the half lines (in Chinese), Sci. Sin. Math. 42(7)(2012) 735-756
  11. Y. Liu, IVPs for singular multi-term fractional differential equations with multiple base points and applications, Appl. Math. 41(4)(2014) 361-384
  12. Y. Liu, Boundary value problems of singular multi-term fractional differential equations with impulse effects, Mathematische Nachrichten, 5(3)(2016) 409-472
  13. Y. Liu, Studies on impulsive differential models with multi-term Riemann-Liouville fractional derivatives, J. Appl. Math. Computing, 2015: 1-37
  14. Y. Liu, Existence of Solutions of IVPs for Differential Systems on Half Line with Sequential Fractional Derivative Operators, 18(1)(2015) 27-54
  15. Y. Liu, B. Ahmad, A Study of Impulsive Multiterm Fractional Differential Equations with Single and Multiple Base Points and Applications, The Scientific World Journal, 2014(2014), Article ID 194346, 28 page
  16. H. Maagli, Existence of positive solutions for a nonlinear fractional differential equation, Electron. J. Diff. Equ. 29 (2013), 1-5
  17. F. Mainardi, Fractional Calculus: Some basic problems in continuum and statistical mechanics. In Fractals and Fractional Calculus in Continuum Mechanics (Eds. : A. Carpinteri and F. Mainardi). New York. Springer 1997
  18. J. Mawhin, Topological degree methods in nonlinear boundary value problems, In NSFCBMS Regional Conference Series in Math. American Math. Soc. Providence, RI 1979
  19. F. Mainardi, Fraction Calculus: Some basic problems in continuum and statistical machanics, In: A. Carpinteri, F. Mainardi (eds. ) Fratals and Fractional Calculus in Continuum Machanics, Springer, Vien, 1997, PP. 291-348
  20. K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York. John Wiley and Sons Inc. 1993
  21. L. Mahto, S. Abbas, A. Favini, Analysis of Caputo impulsive fractional order differential equations with applications, Adv. Differ. Equ. 2013 (2013), Article ID 704547, 11 pages
  22. I. Podlubny, Geometric and physical interpretation of fractional integration and frac-tional differentiation, Dedicated to the 60th anniversary of Prof. Francesco Mainardi. Fract. Calc. Appl. Anal. 5(2002) 367-386
  23. I. Podlubny, Fractional Differential Equations, London. Academic Press 1999
  24. X. Wang, C. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equations, Electron. J. Qual. Theory Differ. Equ. 3 (2011), 1-15

Полный текст (pdf)