ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

Sets of Invariant Measures and Cesaro Stability

Автор(ы):

Sergey Gennadievich Kryzhevich

Saint-Petersburg State University,
Department of Mathematical Physics,
198504, 28, Universitetsky pr, Peterhof, Saint-Petersburg, Russia;
University of Nova Gorica,
Vipavska cesta, 13, Nova Gorica, Slovenia, SI-5000

kryzhevicz@gmail.com

Аннотация:

We take a space X of dynamical systems that could be: homeomorphisms or continuous maps of a compact metric space K or diffeomorphisms of a smooth manifold or actions of an amenable group. We demonstrate that a typical dynamical system of X is a continuity point for the set of probability invariant measures considered as a function of a map, let Y be the set of all such continuity points. As a corollary we prove that for typical dynamical systems average values of continuous functions calculated along trajectories do not drastically change if the system is perturbed.

Ключевые слова

Ссылки:

  1. S. Smale, Structurally stable systems are not dense. Amer J Math, 1966, 88, 491-496
  2. I. Kupka, Contribution à la thé orie des champs gé né riques, Contributions to differential equations, 2 (1963), 457 - 484 (French)
  3. S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lect. Notes Math., Vol. 1706, Springer-Verlag, 1999
  4. R. Corless, S. Yu. Plyugin, Approximate and Real Trajectories for Generic Dynamical Systems, Journal of Mathematical Analysis and Applications, Vol. 189, No. 2, 1995, pp. 409-423. doi:10. 1006/jmaa. 1995. 1027
  5. B. Honary, A. Bahabadi, Inverse Shadowing and Weak Inverse Shadowing Property, Applied Mathematics, Vol. 3, No. 5, 2012, pp. 478-483. doi: 10. 4236/am. 2012. 35072
  6. K. Sakai, Shadowing property and transversality condition, Dynamical Systems and Chaos (World Sci., Singapore). 1995. - V. 1, P. 233-238
  7. A. V. Osipov, S. Yu. Pilyugin, S. B. Tikhomirov, Periodic shadowing and ε -stability, Regular and Chaoitc Dynam. 15 (2010), 404-417
  8. K. J. Palmer, S. Yu. Pilyugin, S. B. Tikhomirov, Lipschitz shadowing and structural stability of flows, Journ. Differ. Equat., 252 (2012), 1723-1747
  9. S. Yu. Pilyugin, S. B. Tikhomirov, Lipschitz Shadowing implies structural stability, Nonlinearity 23 (2010) 2509-2515 = arXiv:1010. 3688
  10. S. Yu. Pilyugin, O. B. Plamenevskaya, Shadowing is generic, Topol. Appl., 97:3, 253-266 (1999)
  11. C. Bonatti, L. G. Diaz, G. Turcat, Pas de shadowing lemma pour des dynamiques partiellement hyperboliques, C. R. Acad. Sci. Paris Sé r. I Math. 330 (2000), no. 7, 587-592 (French)
  12. C. -C. Yuan, J. A. Yorke, An open set of maps for which every point is absolutely nonshadowable, Proc. Amer. Math. Soc., 128 (2000), 909-918
  13. F. Takens, On Zeeman's tolerance stability conjecture. In: Manifolds-Amsterdam 1970. Lect. Notes Math, 197, Berlin, Heidelberg, New York, Springer-Verlag, 1971, 209-219
  14. W. White, On the tolerance stability conjecture. Salvador Symp. Dyn. Syst. 1971, Univ of Bahia, 663-665
  15. M. Mazur, Tolerance stability conjecture revisited, Topology and its Applications 131 (2003) 33-38
  16. M. L. Blank, Metric properties of ε - trajectory of dynamical systems with stochastic behavior, Ergodic Theory and Dynamical Systems, 8, 1988, 365-378
  17. P. Oprocha, X. Wu, On average tracing of periodic average pseudo orbits, Discrete Continuous Dyn. Sys., 37:9 (2017), 4943-4057
  18. S. G. Kryzhevich, Shadowing along subsequences for continuous mappings, Vestnik St. Petersburg University: Mathematics, 47:3 (2014), 102-104
  19. S. Yu. Pilyugin, Spaces of Dynamical Systems, De Gruyter, 2012, ISBN 978-3-11-025595-9
  20. R. Grigorchuk, P. de la Harpe, Amenability and ergodic properties of topological groups: from Bogolyubov onwards, arXiv:1404. 7030
  21. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1997
  22. A. Nevo, E. M. Stein, A generalization of Birkhoff's pointwise ergodic theorem, Acta Math. 1994. Vol. 173. P. 135-154
  23. C. Bonatti, S. Crovisier, Ré currence et gé né ricité , Invent. Math. 158 (2004), 33-104 (French)
  24. S. Yu. Pilyugin, The space of dynamical systems with the C0 topology, Lect Notes Math, 1571. Berlin, Heidelberg, New York, Springer-Verlag, 1994

Полный текст (pdf)