ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

Application of the Method of Approximation of Iterated Stochastic Ito Integrals Based on Generalized Multiple Fourier Series to the High-order Strong Numerical Methods for Non-commutative Semilinear Stochastic Partial Differential Equations

Автор(ы):

Dmitriy Feliksovich Kuznetsov

Peter the Great Saint-Petersburg Polytechnic University
195251, Saint-Petersburg, Polytechnicheskaya ul., 29
Department of Higher Mathematics
Dr. Sc., Professor

sde_kuznetsov@inbox.ru

Аннотация:

We consider a method for the approximation of iterated stochastic Ito integrals of arbitrary multiplicity with respect to the infinite-dimensional Wiener process using the mean-square approximation method of iterated stochastic Ito integrals with respect to the finite-dimensional Wiener process based on generalized multiple Fourier series. The case of Fourier-Legendre series is considered in details. The results of the article can be applied to construction of high-order strong numerical methods (with respect to the temporal discretization) for a mild solution of non-commutative semilinear stochastic partial differential equations.

Ключевые слова

Ссылки:

  1. Gyongy I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal. 9: 1 (1998), 1-25
  2. Gyongy I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11: 1 (1999), 1-37
  3. Gyongy I. , Krylov N. An accelerated splitting-up method for parabolic equations. SIAM J. Math. Anal. 37: 4 (2005), 1070-1097
  4. Hausenblas E. Numerical analysis of semilinear stochastic evolution equations in Banach spaces. J. Comput. Appl. Math. 147: 2 (2002), 485-516
  5. Hausenblas E. Approximation for semilinear stochastic evolution equations. Potential Anal. 18: 2 (2003), 141-186
  6. Hutzenthaler M., Jentzen A. Non-globally Lipschitz counterexamples for the stochastic Euler scheme. arXiv:0905. 0273 [math. NA]. 2009, 22 pp. Available at: https://arxiv.org/abs/0905.0273
  7. Jentzen A. Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients. Potential Anal. 31: 4 (2009), 375-404
  8. Jentzen A. Taylor expansions of solutions of stochastic partial differential equations. arXiv:0904. 2232 [math. NA]. 2009, 32 pp. Available at: https://arxiv.org/abs/0904.2232
  9. Jentzen A., Kloeden P. E. Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 465, Issue 2102 (2009), 649-667
  10. Jentzen A., Kloeden P. E. Taylor expansions of solutions of stochastic partial differential equations with additive noise. Ann. Probab. 38: 2 (2010), 532-569
  11. Jentzen A., Kloeden P. E. Taylor Approximations for Stochastic Partial Differential Equations. Philadelphia, SIAM Publ., 2011. 224 p
  12. Jentzen A., Rö ckner M. A Milstein scheme for SPDEs. Foundations Comp. Math. 15: 2 (2015), 313-362
  13. Becker S., Jentzen A. and Kloeden P. E. An exponential Wagner-Platen type scheme for SPDEs. SIAM J. Numer. Anal. 54: 4 (2016), 2389-2426
  14. Zhang Z., Karniadakis G. Numerical Methods for Stochastic Partial Differential Equations with White Noise. Springer Publ., 2017. 398 p
  15. Jentzen A., Rö ckner M. Regularity analysis of stochastic partial differential equations with nonlinear multiplicative trace class noise. J. Differ. Eq. 252: 1 (2012), 114-136
  16. Kloeden P. E., Platen E. Numerical solution of stochastic differential equations. Berlin, Springer-Verlag Publ., 1992. 632 p
  17. Lord G. J., Tambue A. A modified semi-implict Euler-Maruyama Scheme for finite element discretization of SPDEs. arXiv:1004. 1998 [math. NA]. 2010, 23 pp. Available at: https://arxiv.org/abs/1004.1998
  18. Mishura Y. S., Shevchenko G. M. Approximation schemes for stochastic differential equations in a Hilbert space. Theor. Prob. Appl. 51: 3 (2007), 442-458
  19. Prevot C., Rö ckner M. A concise course on stochastic partial differential equations, vol. 1905 of Lecture Notes in Mathematics. Berlin, Springer Publ., 2007. 148 p
  20. Shardlow T. Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optim. 20: 1-2 (1999), 121-145
  21. Da Prato G., Jentzen A. and Rö ckner M. A mild Ito formula for SPDEs. arXiv:1009. 3526 [math. PR]. 2012, 39 pp. Available at: https://arxiv.org/abs/1009.3526
  22. Da Prato G. and Zabczyk J. Stochastic equations in infinite dimensions. 2nd Edition. Cambridge, Cambridge University Press Publ., 2014. 493 p
  23. Kruse R. Optimal Error Estimates of Galerkin Finite Element Methods for Stochastic Partial Differential Equations with Multiplicative Noise. IMA J. Numer. Anal. 34: 1 (2014), 217-251
  24. Kruse R. Consistency and Stability of a Milstein-Galerkin Finite Element Scheme for Semilinear SPDE. Stoch. PDE: Anal. Comp. 2: 4 (2014), 471-516
  25. C. Leonhard, A. Rö ß ler A. Iterated stochastic integrals in infinite dimensions: approximation and error estimates. Stoch. PDE: Anal. Comp. 7: 2 (2019), 209-239
  26. Milstein G. N. Chislennoye integrirovaniye stokhasticheskih differencial’nyh uravnenii [Numerical integration of stochastic differential equations], Sverdlovsk, Ural. Univ. Publ., 1988. 225 с
  27. Kuznetsov D. F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full orthonormal systems]. Differencial’nie uravnenia i processy upravlenia, 1997, no. 1, 18-77 (In Russ. ). Available at: http://diffjournal.spbu.ru/EN/numbers/1997.1/article.1.2.html
  28. Kuznetsov D. F. Chislennoye integrirovanie stokhasticheskih differencial’nyh uravnenii. 2. [Numerical Integration of Stochastic Differential Equations. 2. ], St. -Petersburg, Polytechn. Univ. Publ., 2006. 764 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-227
  29. Kuznetsov D. F. Stokhasticheskie differencial’nye uravneniya: teoriya i practika chislennogo resheniya. Izd. 4-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. 4-th Ed. ], St. -Petersburg, Polytechn. Univ. Publ., 2010. 816 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-231
  30. Kuznetsov D. F. Strong approximation of multiple Ito and Stratonovich stochastic integrals: multiple Fourier series approach. 2nd Ed. St. -Petersburg, Polytechn. Univ. Publ., 2011. 284 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-233
  31. Kuznetsov D. F. Multiple Ito and Stratonovich stochastic integrals: approximations, properties, formulas. St. -Petersburg, Polytechn. Univ. Publ., 2013. 382 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-234
  32. Kuznetsov D. F. [Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas]. Differencial’nie uravnenia i processy upravlenia, 2017, no. 1, A. 1 - A. 385. Available at: http://diffjournal.spbu.ru/EN/numbers/2017.1/article.2.1.html
  33. Kuznetsov D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. Comp. Math. Math. Phys. 58: 7 (2018), 1058-1070. DOI: http://doi.org/10.1134/S0965542518070096
  34. Kuznetsov D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Autom. RemoteControl, 79: 7 (2018), 1240-1254. DOI: http://doi.org/10.1134/S0005117918070056
  35. Kuznetsov D. F. Stokhasticheskie differencial’nye uravneniya: teoriya i practika chislennogo resheniya. S programmami v srede Matlab. Izd. 6-e. [Stochastic differential equations: theory and practice of numerical solution. With Matlab programs. 6-th Ed. ]. Differencial’nie uravnenia i processy upravlenia. 2018, no. 4, A. 1 - A. 1073. Available at: http://diffjournal.spbu.ru/EN/numbers/2018.4/article.2.1.html
  36. Kuznetsov D. F. Expansion of multiple Ito stochastic integrals of arbitrary multiplicity, based on generalized multiple Fourier series, converging in the mean. (In English). arXiv:1712. 09746 [math. PR]. 2017, 22 pp. Available at: https://arxiv.org/abs/1712.09746
  37. Kuznetsov D. F. Mean-square approximation of multiple Ito and Stratonovich stochastic integrals from the Taylor-Ito and Taylor-Stratonovich expansions, using Legendre polynomials. (In English). arXiv:1801. 00231 [math. PR]. 2017, 36 pp. Available at: https://arxiv.org/abs/1801.00231
  38. Kuznetsov D. F. On numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Autom. Remote Control. 80: 5 (2019), 867-881. DOI: http://doi.org/10.1134/S0005117919050060
  39. Kuznetsov D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. Comp. Math. Math. Phys. 59: 8 (2019), 1236-1250. DOI: http://doi.org/10.1134/S0965542519080116

Полный текст (pdf)