Application of the Method of Approximation of Iterated Stochastic Ito Integrals Based on Generalized Multiple Fourier Series to the High-order Strong Numerical Methods for Non-commutative Semilinear Stochastic Partial Differential Equations
Автор(ы):
Dmitriy Feliksovich Kuznetsov
Peter the Great Saint-Petersburg Polytechnic University
195251, Saint-Petersburg, Polytechnicheskaya ul., 29
Department of Higher Mathematics
Dr. Sc., Professor
sde_kuznetsov@inbox.ru
Аннотация:
We consider a method for the approximation of iterated stochastic Ito
integrals of arbitrary multiplicity with respect to the
infinite-dimensional Wiener process using the mean-square
approximation method of iterated stochastic Ito integrals with
respect to the finite-dimensional Wiener process based on
generalized multiple Fourier series. The case of Fourier-Legendre
series is considered in details.
The results of the article can be applied to construction of
high-order strong numerical methods (with respect to the temporal
discretization) for a mild solution of non-commutative semilinear
stochastic partial differential equations.
Ключевые слова
- expansion
- generalized multiple Fourier series
- infinite-dimensional Wiener process
- iterated stochastic Ito integral
- Legendre polynomials
- mean-square approximation
- multiple Fourier-Legendre series
- non-commutative semilinear stochastic partial differential equation
Ссылки:
- Gyongy I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal. 9: 1 (1998), 1-25
- Gyongy I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11: 1 (1999), 1-37
- Gyongy I. , Krylov N. An accelerated splitting-up method for parabolic equations. SIAM J. Math. Anal. 37: 4 (2005), 1070-1097
- Hausenblas E. Numerical analysis of semilinear stochastic evolution equations in Banach spaces. J. Comput. Appl. Math. 147: 2 (2002), 485-516
- Hausenblas E. Approximation for semilinear stochastic evolution equations. Potential Anal. 18: 2 (2003), 141-186
- Hutzenthaler M., Jentzen A. Non-globally Lipschitz counterexamples for the stochastic Euler scheme. arXiv:0905. 0273 [math. NA]. 2009, 22 pp. Available at: https://arxiv.org/abs/0905.0273
- Jentzen A. Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients. Potential Anal. 31: 4 (2009), 375-404
- Jentzen A. Taylor expansions of solutions of stochastic partial differential equations. arXiv:0904. 2232 [math. NA]. 2009, 32 pp. Available at: https://arxiv.org/abs/0904.2232
- Jentzen A., Kloeden P. E. Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 465, Issue 2102 (2009), 649-667
- Jentzen A., Kloeden P. E. Taylor expansions of solutions of stochastic partial differential equations with additive noise. Ann. Probab. 38: 2 (2010), 532-569
- Jentzen A., Kloeden P. E. Taylor Approximations for Stochastic Partial Differential Equations. Philadelphia, SIAM Publ., 2011. 224 p
- Jentzen A., Rö ckner M. A Milstein scheme for SPDEs. Foundations Comp. Math. 15: 2 (2015), 313-362
- Becker S., Jentzen A. and Kloeden P. E. An exponential Wagner-Platen type scheme for SPDEs. SIAM J. Numer. Anal. 54: 4 (2016), 2389-2426
- Zhang Z., Karniadakis G. Numerical Methods for Stochastic Partial Differential Equations with White Noise. Springer Publ., 2017. 398 p
- Jentzen A., Rö ckner M. Regularity analysis of stochastic partial differential equations with nonlinear multiplicative trace class noise. J. Differ. Eq. 252: 1 (2012), 114-136
- Kloeden P. E., Platen E. Numerical solution of stochastic differential equations. Berlin, Springer-Verlag Publ., 1992. 632 p
- Lord G. J., Tambue A. A modified semi-implict Euler-Maruyama Scheme for finite element discretization of SPDEs. arXiv:1004. 1998 [math. NA]. 2010, 23 pp. Available at: https://arxiv.org/abs/1004.1998
- Mishura Y. S., Shevchenko G. M. Approximation schemes for stochastic differential equations in a Hilbert space. Theor. Prob. Appl. 51: 3 (2007), 442-458
- Prevot C., Rö ckner M. A concise course on stochastic partial differential equations, vol. 1905 of Lecture Notes in Mathematics. Berlin, Springer Publ., 2007. 148 p
- Shardlow T. Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optim. 20: 1-2 (1999), 121-145
- Da Prato G., Jentzen A. and Rö ckner M. A mild Ito formula for SPDEs. arXiv:1009. 3526 [math. PR]. 2012, 39 pp. Available at: https://arxiv.org/abs/1009.3526
- Da Prato G. and Zabczyk J. Stochastic equations in infinite dimensions. 2nd Edition. Cambridge, Cambridge University Press Publ., 2014. 493 p
- Kruse R. Optimal Error Estimates of Galerkin Finite Element Methods for Stochastic Partial Differential Equations with Multiplicative Noise. IMA J. Numer. Anal. 34: 1 (2014), 217-251
- Kruse R. Consistency and Stability of a Milstein-Galerkin Finite Element Scheme for Semilinear SPDE. Stoch. PDE: Anal. Comp. 2: 4 (2014), 471-516
- C. Leonhard, A. Rö ß ler A. Iterated stochastic integrals in infinite dimensions: approximation and error estimates. Stoch. PDE: Anal. Comp. 7: 2 (2019), 209-239
- Milstein G. N. Chislennoye integrirovaniye stokhasticheskih differencial’nyh uravnenii [Numerical integration of stochastic differential equations], Sverdlovsk, Ural. Univ. Publ., 1988. 225 с
- Kuznetsov D. F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full orthonormal systems]. Differencial’nie uravnenia i processy upravlenia, 1997, no. 1, 18-77 (In Russ. ). Available at: http://diffjournal.spbu.ru/EN/numbers/1997.1/article.1.2.html
- Kuznetsov D. F. Chislennoye integrirovanie stokhasticheskih differencial’nyh uravnenii. 2. [Numerical Integration of Stochastic Differential Equations. 2. ], St. -Petersburg, Polytechn. Univ. Publ., 2006. 764 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-227
- Kuznetsov D. F. Stokhasticheskie differencial’nye uravneniya: teoriya i practika chislennogo resheniya. Izd. 4-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. 4-th Ed. ], St. -Petersburg, Polytechn. Univ. Publ., 2010. 816 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-231
- Kuznetsov D. F. Strong approximation of multiple Ito and Stratonovich stochastic integrals: multiple Fourier series approach. 2nd Ed. St. -Petersburg, Polytechn. Univ. Publ., 2011. 284 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-233
- Kuznetsov D. F. Multiple Ito and Stratonovich stochastic integrals: approximations, properties, formulas. St. -Petersburg, Polytechn. Univ. Publ., 2013. 382 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-234
- Kuznetsov D. F. [Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas]. Differencial’nie uravnenia i processy upravlenia, 2017, no. 1, A. 1 - A. 385. Available at: http://diffjournal.spbu.ru/EN/numbers/2017.1/article.2.1.html
- Kuznetsov D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. Comp. Math. Math. Phys. 58: 7 (2018), 1058-1070. DOI: http://doi.org/10.1134/S0965542518070096
- Kuznetsov D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Autom. RemoteControl, 79: 7 (2018), 1240-1254. DOI: http://doi.org/10.1134/S0005117918070056
- Kuznetsov D. F. Stokhasticheskie differencial’nye uravneniya: teoriya i practika chislennogo resheniya. S programmami v srede Matlab. Izd. 6-e. [Stochastic differential equations: theory and practice of numerical solution. With Matlab programs. 6-th Ed. ]. Differencial’nie uravnenia i processy upravlenia. 2018, no. 4, A. 1 - A. 1073. Available at: http://diffjournal.spbu.ru/EN/numbers/2018.4/article.2.1.html
- Kuznetsov D. F. Expansion of multiple Ito stochastic integrals of arbitrary multiplicity, based on generalized multiple Fourier series, converging in the mean. (In English). arXiv:1712. 09746 [math. PR]. 2017, 22 pp. Available at: https://arxiv.org/abs/1712.09746
- Kuznetsov D. F. Mean-square approximation of multiple Ito and Stratonovich stochastic integrals from the Taylor-Ito and Taylor-Stratonovich expansions, using Legendre polynomials. (In English). arXiv:1801. 00231 [math. PR]. 2017, 36 pp. Available at: https://arxiv.org/abs/1801.00231
- Kuznetsov D. F. On numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Autom. Remote Control. 80: 5 (2019), 867-881. DOI: http://doi.org/10.1134/S0005117919050060
- Kuznetsov D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. Comp. Math. Math. Phys. 59: 8 (2019), 1236-1250. DOI: http://doi.org/10.1134/S0965542519080116