Upper Estimate for Hausdorff Dimension of Invariant Sets of Evolutionary Variational Inequalities
Author(s):
Amina V. Kruck
Saint-Petersburg State University,
The Faculty of Mathematics and Mechanics
198504, Peterhof, St. Petersburg, Russia
Universitetsky prospekt, 28
kruck.amina@gmail.com
Abstract:
In this paper we consider a class of evolutionary variational
inequalities arising in mechanics. The method of determining
observations is used to obtain upper estimates for fractal and Hausdorff
dimension of invariant sets of variational inequalities.
The construction of determining observation is realised by frequency
theorem for evolution systems (Theorem Likhtarnikov-Yakubovich).
A similar approach for the construction of determining observation
was used to investigate the system stability and the existence of
attractor of evolution systems. The main result of this paper is
frequency conditions for the existence of determining observation,
which allow us to obtain upper estimates for fractal and the
Hausdorff dimension of an invariant set. As an example we show how
to apply the obtained results to the investigation
of viscoelasticity contact problem.
Keywords
- attractors
- determining observations
- evolutional systems
- Hausdorff dimension
- variational inequality
References:
- Boichenko, V. A., Leonov, G. A., Reitmann, V., Dimension Theory for Ordinary Differential Equations. Wiesbaden:Vieweg-Teubner Verlag, 2005
- Brezis, H., Problemes uni lateraux. J. Math. Pures. Appl., 1972, Vol. 51, page 1-168
- Chueshov, I. D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems. ACTA. Kharkov, 1999
- Chueshov, I. D., On functionals that uniquely determine the long-time behaviour of solutions to von Karman evolution equations. Uspekhi Matem. Nauk, 1996, Vol. 51, Is. 5, page 162
- Duvant, G. and J. -L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976
- Ermakov I. V., Kalinin Y. N., Reitmann V. [Determining Modes and Almost Periodic Integrals for Cocycles]. Differencial'nie uravnenia i processy upravlenia 2011, № 4., p. 113-137. (In Russ. )
- Foias, C. and G. Prodi, Sur le comportement global des solutions nonstationaires des equations de Navier-Stokes en dimension deux. Rend. Sem. Mat. Univ. Padova, 1967, Vol. 36, page 1-34
- Foias, C. and R. Temam, Determination of solutions of the Navier-Stokes equations by a set of nodal values. Math. Comput., 1984, Vol. 43, page 117-133
- Han, W. and M. Sofonea, Evolutionary variational inequalities arising in viscoelastic contact problems. SIAM J. Numer. Anal., 2000, Vol. 38, Is. 2, page 556-579
- Hoffmann, K. -H. and J. Sprekels, On the identification of parameters in general variational inequalities by asymptotic regularization. SIAM J. Math. Anal., 1986, Vol. 17, page 1198-217
- Jarusek, J. and Ch. Eck, Dynamic contact problem with friction in linear viscoelasticity. C. R. Acad. Sci. Paris, 1996, Vol. 322, page 497-502
- Kruk, A. and Reitmann, V., Upper Hausdorff dimension estimates for invariant sets of evolutionary variational inequalities. [Proc. Int. Conf. "Spatio-temporal dynamical systems"], Moscow, Russia 2014
- Ladyzhenskaya, O. A., A dynamical system generated by the Navier-Stokes equations. J. Soviet Math. 1975, Vol. 3 Is. 4, page 458-479
- Likhtarnikov, A. L. and V. A. Yakubovich, The frequency theorem for equations of evolutionary type. Siberian Math. J. 1976, Vol. 17, Is. 5, page 790-803
- Lihtarnikov A. L., Yakubovich V. A., [Frequency Theorem; Equations of Evolutionary Type] Sibirskij matematiceskij zurnal , 1976, Vol. 17, №5, p. 1069 - 1085. (In Russ. )
- Lions, J. L., Quelques Methodes de Resolution des Problemes aux Limites nou Lineaires. Dunad, Paris 1969
- Maksimov, V. I., Inverse problems for variational inequalities. Intern. Series of Numerical Math., Birkhouser Verlag, Basel, 1992, Vol. 107, page 275-286
- Pankov A. A., Boundedness and almost periodicity in time of solutions of evolutionary variational inequalities, Math. USSR-Izv., 1982, Vol. 46. 2 , p. 303-332
- Reitmann, V., Dinamicheskiye sistemy, attraktory i otsenki ikh razmernosti [Dynamical Systems, Attractors and Estimates of their Dimension]. St. Petersburg, St. Univ. Publ., 2013. (In Russ. )
- Reitmann, V., Upper fractal dimension estimates for invariant sets of evolutionary variational inequalities. Proc. Inter. Conf. "Fractal Geometry ans Stochastics III"', Friedrichrode, 2003
- Triebel, H., Interpolation Theorie, Function Spaces, Differential Operators. Amsterdam, North-Holland 1978