ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Upper Estimate for Hausdorff Dimension of Invariant Sets of Evolutionary Variational Inequalities

Author(s):

Amina V. Kruck

Saint-Petersburg State University,
The Faculty of Mathematics and Mechanics
198504, Peterhof, St. Petersburg, Russia
Universitetsky prospekt, 28

kruck.amina@gmail.com

Abstract:

In this paper we consider a class of evolutionary variational inequalities arising in mechanics. The method of determining observations is used to obtain upper estimates for fractal and Hausdorff dimension of invariant sets of variational inequalities. The construction of determining observation is realised by frequency theorem for evolution systems (Theorem Likhtarnikov-Yakubovich). A similar approach for the construction of determining observation was used to investigate the system stability and the existence of attractor of evolution systems. The main result of this paper is frequency conditions for the existence of determining observation, which allow us to obtain upper estimates for fractal and the Hausdorff dimension of an invariant set. As an example we show how to apply the obtained results to the investigation of viscoelasticity contact problem.

Keywords

References:

  1. Boichenko, V. A., Leonov, G. A., Reitmann, V., Dimension Theory for Ordinary Differential Equations. Wiesbaden:Vieweg-Teubner Verlag, 2005
  2. Brezis, H., Problemes uni lateraux. J. Math. Pures. Appl., 1972, Vol. 51, page 1-168
  3. Chueshov, I. D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems. ACTA. Kharkov, 1999
  4. Chueshov, I. D., On functionals that uniquely determine the long-time behaviour of solutions to von Karman evolution equations. Uspekhi Matem. Nauk, 1996, Vol. 51, Is. 5, page 162
  5. Duvant, G. and J. -L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976
  6. Ermakov I. V., Kalinin Y. N., Reitmann V. [Determining Modes and Almost Periodic Integrals for Cocycles]. Differencial'nie uravnenia i processy upravlenia 2011, № 4., p. 113-137. (In Russ. )
  7. Foias, C. and G. Prodi, Sur le comportement global des solutions nonstationaires des equations de Navier-Stokes en dimension deux. Rend. Sem. Mat. Univ. Padova, 1967, Vol. 36, page 1-34
  8. Foias, C. and R. Temam, Determination of solutions of the Navier-Stokes equations by a set of nodal values. Math. Comput., 1984, Vol. 43, page 117-133
  9. Han, W. and M. Sofonea, Evolutionary variational inequalities arising in viscoelastic contact problems. SIAM J. Numer. Anal., 2000, Vol. 38, Is. 2, page 556-579
  10. Hoffmann, K. -H. and J. Sprekels, On the identification of parameters in general variational inequalities by asymptotic regularization. SIAM J. Math. Anal., 1986, Vol. 17, page 1198-217
  11. Jarusek, J. and Ch. Eck, Dynamic contact problem with friction in linear viscoelasticity. C. R. Acad. Sci. Paris, 1996, Vol. 322, page 497-502
  12. Kruk, A. and Reitmann, V., Upper Hausdorff dimension estimates for invariant sets of evolutionary variational inequalities. [Proc. Int. Conf. "Spatio-temporal dynamical systems"], Moscow, Russia 2014
  13. Ladyzhenskaya, O. A., A dynamical system generated by the Navier-Stokes equations. J. Soviet Math. 1975, Vol. 3 Is. 4, page 458-479
  14. Likhtarnikov, A. L. and V. A. Yakubovich, The frequency theorem for equations of evolutionary type. Siberian Math. J. 1976, Vol. 17, Is. 5, page 790-803
  15. Lihtarnikov A. L., Yakubovich V. A., [Frequency Theorem; Equations of Evolutionary Type] Sibirskij matematiceskij zurnal , 1976, Vol. 17, №5, p. 1069 - 1085. (In Russ. )
  16. Lions, J. L., Quelques Methodes de Resolution des Problemes aux Limites nou Lineaires. Dunad, Paris 1969
  17. Maksimov, V. I., Inverse problems for variational inequalities. Intern. Series of Numerical Math., Birkhouser Verlag, Basel, 1992, Vol. 107, page 275-286
  18. Pankov A. A., Boundedness and almost periodicity in time of solutions of evolutionary variational inequalities, Math. USSR-Izv., 1982, Vol. 46. 2 , p. 303-332
  19. Reitmann, V., Dinamicheskiye sistemy, attraktory i otsenki ikh razmernosti [Dynamical Systems, Attractors and Estimates of their Dimension]. St. Petersburg, St. Univ. Publ., 2013. (In Russ. )
  20. Reitmann, V., Upper fractal dimension estimates for invariant sets of evolutionary variational inequalities. Proc. Inter. Conf. "Fractal Geometry ans Stochastics III"', Friedrichrode, 2003
  21. Triebel, H., Interpolation Theorie, Function Spaces, Differential Operators. Amsterdam, North-Holland 1978

Full text (pdf)