ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Statistical Prediction Algorithms for Nonlinear Stochastic Jump-diffusion Systems

Author(s):

Tatyana Averina

Institute of Computational Mathematics and Mathematical Geophysics SB RAS
Novosibirsk state university, Computational mathematics department

ata@osmf.sscc.ru

Konstantin A. Rybakov

Moscow aviation institute (national research university),
Mathematical cybernetics department, associate professor
associate professor, candidate of physico-mathematical sciences

rkoffice@mail.ru

Abstract:

In this paper we discuss an evolution of the new approach to the prediction problem for nonlinear stochastic differential systems with a Poisson component. The proposed approach is based on reducing the prediction problem to the analysis of stochastic jump-diffusion systems with terminating and branching paths. The solution of analysis problem can be found approximately by using numerical methods for solving stochastic differential equations and methods for modeling inhomogeneous Poisson flows.

Keywords

References:

  1. Averina T. A. New algorithms for statistical modeling of inhomogeneous Poisson ensembles. Computational Mathematics and Mathematical Physics, 2010, vol. 50, no. 1, pp. 12-18
  2. Averina T. A. Ustoychivye chislennye metody resheniya stokhasticheskikh differentsial'nykh uravneniy v smysle Stratonovicha [Numerical methods for solving stochastic differential equations in the Stratonovich sense]. Proceedings of the Buryat State University, 2012, no. 9, pp. 91-94. (In Russ. )
  3. Averina T. A. Postroenie algoritmov statisticheskogo modelirovaniya sistem so sluchainoy strukturoy [Construction of Statistical Modeling Algorithms for Systems with Random Structure]. Novosibirsk, Novosibirsk State University, 2015
  4. Averina T. A., Rybakov K. A. Dva metoda analiza stokhasticheskikh sistem s puassonovskoy sostavlyayushchey [Two methods for analysis of stochastic systems with Poisson component]. Differential Equations and Control Processes, 2013, no. 3, pp. 85-116. (In Russ. )
  5. Averina T. A., Rybakov K. A. [Extrapolation for stochastic differential systems with jumps]. Problemy optimizatsii slozhnykh sistem. XI Mezhdunarodnaya Aziatskaya shkola-seminar [Proc. 11th International Asian Seminar “Optimization Problems of Complex Systems”], Cholpon-Ata, 2015, part. 1, pp. 16-24. (In Russ. )
  6. Averina T. A., Rybakov K. A. An approximate solution of the prediction problem for stochastic jump-diffusion systems. Numerical Analysis and Applications, 2017, vol. 10, no. 1, pp. 1-10
  7. Kazakov I. Ye., Artem’ev V. M., Bukhalev V. A. Analiz sistem sluchaynoy struktury [Analysis of Systems with Random Structure]. Moscow, Nauka Publ., 1993
  8. Karachanskaya E. V. Construction of programmed controls for a dynamic system based on the set of its first integrals. Journal of Mathematical Sciences, 2014, vol. 199, no. 5, pp. 547-555
  9. Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F. Spravochnik po teorii veroyatnostey i matematicheskoy statistike [Handbook of the Probability Theory and Mathematical Statistics]. Moscow, Nauka Publ., 1985
  10. Kuznetsov D. F. Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya [Stochastic Differential Equations: Theory and Practice of Numerical Solution]. St. Petersburg, Publishing House of the St. Petersburg Polytechnic University], 2010
  11. Liptser R. Sh., Shiryaev A. N. Statistics of Random Processes. Springer-Verlag, 2001
  12. Mikhailov G. A., Averina T. A. The maximal section algorithm in the Monte Carlo method. Doklady Mathematics, 2009, vol. 80, no. 2, pp. 671-673
  13. Panteleev A. V., Rudenko E. A., Bortakovskiy A. S. Nelineynye sistemy upravleniya: opisanie, analiz i sintez [Nonlinear Control Systems: Description, Analysis, and Synthesis]. Moscow, University Book, 2008
  14. Panteleev A. V., Rybakov K. A., Sotskova I. L. Spektralnyy metod analiza nelineynykh stokhasticheskikh sistem upravleniya [Spectral Method of Nonlinear Stochastic Control System Analysis]. Moscow, University Book, 2015
  15. Paraev Yu. I. Vvedenie v statisticheskuyu dinamiku protsessov upravleniya i filtratsii [Introduction to Statistical Dynamics of Control and Filtering Processes]. Moscow, Soviet Radio, 1976
  16. Pugachev V. S., Sinitsyn I. N. Stochastic differential systems. Analysis and filtering. Jonh Wiley, 1987
  17. Rudenko Е. А. Optimal structure of continuous nonlinear reduced-order Pugachev filter. Journal of Computer and Systems Sciences International, 2013, vol. 52, no. 6, pp. 866-892
  18. Rybakov K. A. Svedenie zadachi nelineynoy filtratsii k zadache analiza stokhasticheskikh sistem s obryvami i vetvleniyami traektoriy [Reducing the nonlinear filtering problem to the analysis of stochastic systems with terminating and branching paths]. Differential Equations and Control Processes, 2012, no. 3, pp. 91-110. (In Russ. )
  19. Rybakov K. A. Algoritmy prognozirovaniya sostoyaniy v stokhasticheskikh differentsial'nykh sistemakh na osnove modelirovaniya spetsial'nogo vetvyashchegosya protsessa [Extrapolation algorithms for stochastic differential systems based on modeling special branching process]. Differential Equations and Control Processes, 2015, no. 1, pp. 25-38. (In Russ. )
  20. Rybakov K. A. Modifitsirovannye statisticheskie algoritmy fil'tratsii i prognozirovaniya v nepreryvnykh stokhasticheskikh sistemakh [Modified statistical algorithms for filtering and extrapolation in continuous-time stochastic systems]. Proceedings of the Institute of Mathematics and Informatics at Udmurt State University, 2015, no. 2 (46), pp. 155-162. (In Russ. )
  21. Rybakov K. A. Solving approximately an optimal nonlinear filtering problem for stochastic differential systems by statistical modeling. Numerical Analysis and Applications, 2013, vol. 6. no. 4, pp. 324-336
  22. Rybakov K. A. Priblizhennyy metod fil'tratsii signalov v stokhasticheskikh sistemakh diffuzionno-skachkoobraznogo tipa [Approximate filter for jump-diffusion models]. Scientific Herald MSTUCA, 2014, no. 207, pp. 54-60. (In Russ. )
  23. Rybakov K. A. Statisticheskie algoritmy optimalnoi filtratcii signalov v nelineinykh diffuzionno-skachkoobraznykh stokhasticheskikh sistemakh [Statistical algorithms of optimal filtering problem for nonlinear jump-diffusion models]. UGATU Bulletin, 2016, vol. 20, no. 4 (74), pp. 107-113. (In Russ. )
  24. Rybakov K. A. Statisticheskie metody analiza i filtratcii v nepreryvnykh stokhasticheskikh sistemakh [Statistical Methods of Analysis and Filtering in Continuous-Time Stochastic Systems]. Moscow, Moscow Aviation Institute, 2017
  25. Sinitsyn I. N. Fil'try Kalmana i Pugacheva [Kalman and Pugachev Filters]. Moscow, Logos, 2007
  26. Sinitsyn I. N., Korepanov E. R. Normal'nye uslovno-optimal'nye fil'try i ekstrapolyatory Pugacheva dlya stokhasticheskikh sistem, lineynykh otnositel'no sostoyaniya [Normal Pugachev conditionally-optimal filters and extrapolators for state linear stochastic systems]. Informatics and Applications. 2016. Vol. 10. No. 2. P. 14-23. (In Russ. )
  27. Artemiev S. S., Averina T. A. Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations. VSP, 1997
  28. Bain A., Crisan D. Fundamentals of Stochastic Filtering. Springer, 2009
  29. Ceci C., Colaneri K. Nonlinear filtering for jump diffusion observations. Advances in Applied Probability, 2012, vol. 44, no. 3, pp. 678-701
  30. Ceci C., Colaneri K. The Zakai equation of nonlinear filtering for jump-diffusion observations: existence and uniqueness. Applied Mathematics & Optimization, 2014, vol. 69, no. 1, pp. 47-82
  31. Crisan D. Exact rates of convergence for a branching particle approximation to the solution of the Zakai equation. The Annals of Probability, 2003, vol. 31, no. 2, p. 693-718
  32. Del Moral P. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, 2004
  33. Del Moral P., Doucet A. Particle methods: an introduction with applications. Proc. Journé es MAS 2012. ESAIM, vol. 44. Clermont-Ferrand. ESAIM, 2014, pp. 1-46
  34. Situ R. Theory of Stochastic Differential Equations with Jumps and Applications. Springer, 2005

Full text (pdf)