Energy Control for Pendulum with Elastic Joint
Author(s):
A. M. Zubritskiy
Saint-Petersburg State University,
199034, Universitetskaya Emb., 7-9
PhD student
theorcyb@yandex.ru
B. M. Sokolov
PhD in Physics and Mathematics
Assoc. Prof.
Saint-Petersburg State University,
199034, Universitetskaya Emb., 7-9
sbm@mail.ru
Abstract:
In this paper the generalization of the energy control problem for
pendulum systems in case of presence of concentrated elastic elements is considered.
The exposition is conducted by example of algorithm of swinging pendulum with drive
having elastic connection with pendulum shaft. For obtaining of swinging algorithm
the speed-gradient algorithm of A.L.Fradkov with the squared system total energy
deviation from given value as the goal function is applied. The conditions for
achievement of the control goal are obtained.
The results of simulation with changing object parameters such as stiffness
coefficient and given total energy value are presented.
Refs 12. Figs 8.
Keywords
- lumped elastic elements
- speed-gradient algorithm
- swinging pendulum
References:
- A. L. Fradkov. [Speed-gradient scheme and its applications in adaptive control]. Avtomatika i telemekhanika. 1979, N9, pp. 90-101
- B. R. Andrievskii, P. Yu. Guzenko, A. L. Fradkov. [Control of nonlinear oscillations of mechanical systems by speed-gradient method]. Avtomatika i telemekhanika, 1996, N4, pp. 4-17
- A. L. Fradkov, V. V. Shiegin. [Stabilization of the energy of oscillations with application to a pendulum with controlled suspension point]. Izvestiya RAN. Teoriya i sistemy upravleniya. 1999, N2, pp. 19- 24
- A. S. Shiriaev, A. L. Fradkov. Stabilization of Invariant Sets of Cascaded Nonlinear Systems, Proc. of the 38th Conference on Decision & Control, Phoenix, Arizona, USA. December 1999, pp. 1296-1301
- A. L. Fradkov. Adaptivnoe upravlenie v slozhnyh sistemah. [Adaptive control in complex systems]. Moscow: Nauka. 1990, 296 p
- M. V. Druzhinina, A. L. Fradkov. Adaptivnoe upravlenie nelineinymi vzaimosvyazannymi sistemami. [Adaptive control of nonlinear interconnected systems]. S. -Petersburg: IPMash RAN, 1997, 57 p
- A. L. Fradkov. Kiberneticheskaya fizika. [Cybernetical physics]. S. -Petersburg: Nauka, 2003, 208 p
- M. M. Semenova. Controllability and observability of manipulators with elastic joints. Sibirskii zhurnal industrial'noi matematiki. Yanvar' - mart, 2004. Vol. VII, N1 (17), pp. 109-113
- Yu. A. Bortsov, G. G. Sokolovskii. Avtomatizirovannyi elektroprivod s uprugimi svyazyami. [Automated electrical drive with elastic liks]. S. -Petersburg: Energoatomizdat, 1992, 288 p
- G. A. Kamaeva, O. A. Peregudova. [Control of multi-link manipulators with flexible joints based on delayed feedback]. Nauchno-tehnicheskii vestnik Povolzh'ya. N1, 2011, pp. 30-33
- V. M. Popov. Giperustoichivost' avtomaticheskih sistem. [Hyperstability of automatic systems]. Moscow: Nauka, 1970
- L. M. Malinin, A. A. Pervozvanskii. [Optimization of passage of unbalanced rotor through critical speed]. Mashinovedenie, N4, 1983, pp. 36-41