ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Energy Control for Pendulum with Elastic Joint


A. M. Zubritskiy

Saint-Petersburg State University,
199034, Universitetskaya Emb., 7-9
PhD student

B. M. Sokolov

PhD in Physics and Mathematics
Assoc. Prof.
Saint-Petersburg State University,
199034, Universitetskaya Emb., 7-9


In this paper the generalization of the energy control problem for pendulum systems in case of presence of concentrated elastic elements is considered. The exposition is conducted by example of algorithm of swinging pendulum with drive having elastic connection with pendulum shaft. For obtaining of swinging algorithm the speed-gradient algorithm of A.L.Fradkov with the squared system total energy deviation from given value as the goal function is applied. The conditions for achievement of the control goal are obtained. The results of simulation with changing object parameters such as stiffness coefficient and given total energy value are presented. Refs 12. Figs 8.



  1. A. L. Fradkov. [Speed-gradient scheme and its applications in adaptive control]. Avtomatika i telemekhanika. 1979, N9, pp. 90-101
  2. B. R. Andrievskii, P. Yu. Guzenko, A. L. Fradkov. [Control of nonlinear oscillations of mechanical systems by speed-gradient method]. Avtomatika i telemekhanika, 1996, N4, pp. 4-17
  3. A. L. Fradkov, V. V. Shiegin. [Stabilization of the energy of oscillations with application to a pendulum with controlled suspension point]. Izvestiya RAN. Teoriya i sistemy upravleniya. 1999, N2, pp. 19- 24
  4. A. S. Shiriaev, A. L. Fradkov. Stabilization of Invariant Sets of Cascaded Nonlinear Systems, Proc. of the 38th Conference on Decision & Control, Phoenix, Arizona, USA. December 1999, pp. 1296-1301
  5. A. L. Fradkov. Adaptivnoe upravlenie v slozhnyh sistemah. [Adaptive control in complex systems]. Moscow: Nauka. 1990, 296 p
  6. M. V. Druzhinina, A. L. Fradkov. Adaptivnoe upravlenie nelineinymi vzaimosvyazannymi sistemami. [Adaptive control of nonlinear interconnected systems]. S. -Petersburg: IPMash RAN, 1997, 57 p
  7. A. L. Fradkov. Kiberneticheskaya fizika. [Cybernetical physics]. S. -Petersburg: Nauka, 2003, 208 p
  8. M. M. Semenova. Controllability and observability of manipulators with elastic joints. Sibirskii zhurnal industrial'noi matematiki. Yanvar' - mart, 2004. Vol. VII, N1 (17), pp. 109-113
  9. Yu. A. Bortsov, G. G. Sokolovskii. Avtomatizirovannyi elektroprivod s uprugimi svyazyami. [Automated electrical drive with elastic liks]. S. -Petersburg: Energoatomizdat, 1992, 288 p
  10. G. A. Kamaeva, O. A. Peregudova. [Control of multi-link manipulators with flexible joints based on delayed feedback]. Nauchno-tehnicheskii vestnik Povolzh'ya. N1, 2011, pp. 30-33
  11. V. M. Popov. Giperustoichivost' avtomaticheskih sistem. [Hyperstability of automatic systems]. Moscow: Nauka, 1970
  12. L. M. Malinin, A. A. Pervozvanskii. [Optimization of passage of unbalanced rotor through critical speed]. Mashinovedenie, N4, 1983, pp. 36-41

Full text (pdf)