Modeling and Analysis of Linear Invariant Stochastic Systems
Author(s):
Tatyana Averina
Institute of Computational Mathematics and Mathematical Geophysics SB RAS;
Novosibirsk State University
ata@osmf.sscc.ru
Elena Karachanskaya
Far Eastern State Transport University,
Pacific National University
elena_chal@mail.ru
Konstantin Rybakov
Moscow Aviation Institute (National Research University)
rkoffice@mail.ru
Abstract:
The main aim of this paper is to test the numerical methods
for stochastic differential equations with solutions on a given smooth manifold.
Cylindrical surfaces of the second order are selected as manifolds examples
for the three-dimensional space (two-dimensional phase space): elliptic,
hyperbolic, and parabolic cylinders. We construct classes of stochastic
differential equations with solutions on these surfaces and consider
linear equations with multiplicative noise. The numerical methods accuracy
is estimated by the statistical modeling as mean distance between
simulated solutions and the given smooth manifold. These results are
compared with a theoretical accuracy of the numerical methods
(in the sense of strong convergence).
Keywords
- first integral
- invariant
- numerical method
- random process
- stochastic differential equation
- stochastic system
References:
- Dubko V. A. Integral invariants for one class of systems of stochastic differential equations. Dopov. Nats. Akad. Nauk Ukr. Mat. Tekh. Nauki, 1984, no. 1, pp. 17-20
- Dubko V. A. Voprosy teorii i primeneniya stokhasticheskikh differentsialnykh uravneniy [Problems of Theory and Application of Stochastic Differential Equations]. Vladivostok, Akad. Nauk SSSR, 1989
- Karachanskaya E. V. Construction of programmed controls for a dynamic system based on the set of its first integrals. Journal of Mathematical Sciences, 2014, vol. 199, no. 5, pp. 547-555
- Karachanskaya E. V. Integralnye invarianty stokhasticheskikh sistem i programmnoe upravlenie s veroyatnostiu 1 [Integral Invariants of Stochastic Systems and Program Control with Probability 1]. Pacific National University, 2015
- Averina T. A., Karachanskaya E. V., Rybakov K. A. Statistical modeling of random processes with invariants. Proceedings of the 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk, 2017, pp. 34-37
- Artemiev S. S., Averina T. A. Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations. VSP, 1997
- Averina T. A. Verifikatsiya chislennykh metodov resheniya sistem so sluchainoy strukturoy [Verification of Numerical Methods for Solving Systems with Random Structure]. Novosibirsk, Novosibirsk State University, 2015
- Averina T. A. Postroenie algoritmov statisticheskogo modelirovaniya sistem so sluchainoy strukturoy [Construction of Statistical Modeling Algorithms for Systems with Random Structure]. Novosibirsk, Novosibirsk State University, 2015
- Averina T. A., Artemiev S. S. A new family of numerical methods for solving stochastic differential equations. Soviet Math. Dokl, 1986, vol. 33, no. 3, pp. 736-738
- Averina T. A., Rybakov K. A. Comparison of a statistical simulation method and a spectral method for analysis of stochastic multistructure systems with distributed transitions. Rus. J. Numer. Anal. Math. Modelling, 2007, vol. 22, no. 5, pp. 431-447
- Burrage K., Tian T. Predictor-corrector methods of Runge-Kutta type for stochastic differential equations. SIAM J. Numer. Anal, 2002, vol. 40, no. 4, pp. 1516-1537
- Burrage K., Burrage P. M., Tian T. Numerical methods for strong solutions of stochastic differential equations: an overview. Proc. R. Soc. Lond. A, 2004, vol. 460, no. 2041, pp. 373-402
- Kloeden P. E., Pearson R. A. The numerical solution of stochastic differential equations. J. Aust. Math. Soc. B, 1977, vol. 20, pp. 8-12
- Kloeden P. E., Platen E. Numerical Solution of Stochastic Differential Equations. Springer, 1995
- Kuznetsov D. F. Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas. Differential Equations and Control Processes, 2017, no. 1
- Maruyama G. Continuous Markov processes and stochastic equations. Rend. Circolo Math. Palermo, 1955, vol. 2, no. 4, pp. 48-90
- Milshtein G. N. Approximate integration of stochastic differential equations. Theory Probab. Appl., 1974, vol. 19, no. 3, pp. 557-562
- Milstein G. N., Tretyakov M. V. Stochastic Numerics for Mathematical Physics. Springer, 2004
- Nikitin N. N., Razevig V. D. Digital simulation of stochastic differential equations and error estimates. USSR Comput. Math. Math. Phys., 1978, vol. 18, no. 1, pp. 102-113
- Panteleev A. V., Rudenko E. A., Bortakovskiy A. S. Nelineynye sistemy upravleniya: opisanie, analiz i sintez [Nonlinear Control Systems: Description, Analysis, and Synthesis]. Moscow, University Book, 2008
- Saul’ev V. K. Chislennoe reshenie uravneniy sluchainykh protcessov [Numerical Solution of Random Processes Equations]. Moscow, MAI, 1989
- Gihman I. I., Skorohod A. V. Stochastic Differential Equations. Springer, 1972