ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

The Description and Analysis of Non-stationary Continuous Control Systems in the Spectral Range in Non-Orthogonal Functions. Orthorecursive Approach

Author(s):

Vladimir Rybin

Moscow Aviation Institute (National Research University)

vv-ribin@mail.ru

Abstract:

Orthorecursive expansions are the generalization of the classical expansions of elements of the Hilbert space into Fourier series. In the article orthorecursive spectral characteristics for the description of signals and control systems are considered. The algorithms using orthorecursive spectral characteristics and intended for the description and analysis of linear non-stationary control systems with both deterministic and random input signals are designed. These algorithms are implemented in package MLSY_OSM_SH + (the extension of Mathcad) which is destined for the analysis of integer and fractional order non-stationary continuous control systems by the spectral method in the system of the Faber–Schauder functions. The results are demonstrated with model examples of the elementary and typical operations of the spectral method.

Keywords

References:

  1. Solodovnikov V. V., Semenov V. V. Spektral'naya teoriya nestatsionarnykh sistem upravleniya [Spectral theory of nonstationary control systems]. Moscow, Nauka Publ., 1974. 336 p
  2. Solodovnikov V. V., Semenov V. V. Spektral'nyy metod rascheta nestatsionarnykh sistem upravleniya letatel'nymi apparatami [Spectral method for calculating nonstationary aircraft control systems]. Moscow, Mashinostroyeniye Publ., 1975. 272 p
  3. Semenov V. V., Rybin V. V. [Spectral analysis of linear continuous-discrete systems with variable parameters on finite nonstationary time intervals]. Adaptivnyye sistemy avtomaticheskogo upravleniya [Adaptive automatic control systems], 1978, no. 6, pp. 3-11. (In Russ. )
  4. Solodovnikov V. V., Semenov V. V., Peshel' M., Nedo D. Raschet sistem upravleniya na TsVM: spektral'nyy i interpolyatsionnyy metody [Design of control systems on digital computers: spectral and interpolational methods]. Moscow, Mashinostroyeniye Publ., 1979. 664 p
  5. Semenov V. V., Rybin V. V. Algoritmicheskoye i programmnoye obespecheniye rascheta nestatsionarnykh nepreryvno-diskretnykh sistem upravleniya LA spektral'nym metodom [Algorithms and software for nonstationary discrete-continuous aircraft control systems by the spectral method]. Moscow, MAI Publ., 1984. 84 p
  6. Panteleyev A. V., Rybakov K. A., Sotskova I. L. Spektral'nyy metod analiza nelineynykh stokhasticheskikh sistem upravleniya [Spectral method of nonlinear stochastic control system analysis]. Moscow, Vuzovskaya Kniga Publ., 2015. 392 p
  7. Rybin V. V. Modelirovaniye nestatsionarnykh nepreryvno-diskretnykh sistem upravleniya spektral'nym metodom v sistemakh komp'yuternoy matematiki [Modeling of nonstationary continuous-discrete control systems by spectral method on computers]. Moscow, MAI Publ., 2011. 220 p
  8. Rybin V. V. Modelirovaniye nestatsionarnykh sistem upravleniya tselogo i drobnogo poryadka proyektsionno-setochnym spektral'nym metodom [Modeling of nonstationary integer-order and fractional-order control systems by grid-projection spectral method]. Moscow, MAI Publ., 2013. 160 p
  9. Rybakov K. A., Rybin V. V. Modelirovaniye raspredelennykh i drobno-raspredelennykh protsessov i sistem upravleniya spektral'nym metodom [Modeling distributed integer-order and fractional-order processes and control systems by spectral method]. Moscow, MAI Publ., 2016. 160 p
  10. Samko S. G., ‎ Kilbas A. A., ‎ Marichev O. I. Fractional Integrals and Derivatives: Theory and Applications. CRC Press, 1993. 1006 p
  11. Lukashenko T. P. [Recursive expansions similar to orthogonal expansions]. Matematika, Ekonomika, Ekologiya, Obrazovaniye, Mezhd. konf. Ryady Fur'ye i ikh prilozheniya [Mathematics, Economics, Ecology, Education, Int. Conf. “Fourier series and their applications”], Rostov-on-Don, 1999, p. 331. (In Russ. )
  12. Lukashenko T. P. [On orthorecursive expansions in the Faber-Schauder system]. Sovremennyye problemy teorii funktsiy i ikh prilozheniya [10th Saratov Winter School “Modern problems in the theory of functions and their applications”], Saratov, 2000, pp. 83. (In Russ. )
  13. Lukashenko T. P. [On the properties of orthorecursive expansions in nonorthogonal systems]. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2001. no. 1, pp. 6-10. (In Russ. )
  14. Lukashenko T. P. [On new expansion systems and their properties]. Chebyshevskiy sbornik, 2004, vol. 5, no. 2, pp. 66-82. (In Russ. )
  15. Rybin V. V., Tsvetayev V. E. [Simulation of fractional aircraft control systems by spectral method in Faber-Schauder function system]. Trudy MAI, 2017, no. 93. (In Russ. )
  16. Politov A. V. [Orthorecursive expansions in Hilbert spaces]. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2010, no. 3, pp. 3-7. (In Russ. )
  17. Rybin V. V. [Development and application of MLSM_SM extension packages for Mathcad, Maple, Mathematica, Matlab CMS]. Trudy MAI, 2003, no. 13. (In Russ. )
  18. Rybin V. V. [Development and application of the Spektr_SM extension package for Simulink CMS Matlab] // Trudy MAI, 2003, no. 13. (In Russ. )
  19. Rybin V. V. Razrabotka i primeneniye paketa rasshireniya Spektr_SM paketa Simulink SKM Matlab [Development and application of expansion package “Spektr_SM” for Simulink Matlab]. Moscow, MAI Publ., 2004. 92 p
  20. Rybakov K. A., Rybin V. V. [Algorithms and software for calculating automated control systems in the spectral form of a mathematical description]. Sovremennaya nauka: teoreticheskie, prakticheskie i innovacionnye aspekty razvitiya [Modern science: Theoretical, practical and innovative aspects of development], vol. 2. Rostov-on-Don: Scientific Cooperation Publ., 2018, p. 171-199. (in Russ. )

Full text (pdf)