ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Modeling Linear Nonstationary Stochastic Systems by Spectral Method

Author(s):

Konstantin Rybakov

Moscow Aviation Institute (National Research University)

rkoffice@mail.ru

Abstract:

The article considers the spectral method for modeling linear one-dimensional nonstationary stochastic systems described by linear stochastic differential equations with additive and multiplicative noise. This method is based on the representation of random processes by the orthogonal series with respect to arbitrary basis systems. The main attention is paid to the approbation of the proposed method, namely, modeling typical random processes that are output signals of linear stochastic systems: Wiener process (Brownian motion), Ornstein--Uhlenbeck process, Brownian bridge, and geometric Brownian motion.

Keywords

References:

  1. Solodovnikov, V. V., Semenov, V. V., Peshel’, M., Nedo, D. Raschet sistem upravleniya na TsVM: spektral’nyi i interpolyatsionnyi metody [Design of control systems on digital computers: spectral and interpolational methods]. Moscow, Mashinostroyeniye Publ., 1979
  2. Rybin, V. V. Modelirovanie nestatsionarnykh nepreryvno-diskretnykh sistem upravleniya spektral’nym metodom v sistemakh komp’yuternoi matematiki [Modeling nonstationary continuous-discrete control systems by spectral method on computers]. Moscow, MAI Publ., 2011
  3. Panteleev, A. V., Bortakovskii, A. S. Teoriya upravleniya v primerakh i zadachakh [Control Theory in Examples and Problems]. Moscow, Infra-M Publ., 2016
  4. Rybakov, K. A. Modeling and analysis of output processes of linear continuous stochastic systems based on orthogonal expansions of random functions. J. Comput. Sys. Sc. Int. , 2020, vol. 59, no. 3, pp. 322-337
  5. Rybakov, K. A. Spectral method of analysis and optimal estimation in linear stochastic systems. Int. J. Model. Simul. Sci. Comput. , 2020, vol. 11, no. 3, 2050022
  6. Semenov, V. V. Formy matematicheskogo opisaniya lineinykh sistem [Forms of Mathematical Description of Linear Systems]. Moscow, MAI Publ., 1980
  7. Baghdasaryan, G. Y., Mikilyan, M. A., Panteleev, A. V., Rybakov, K. A. Spectral method for analysis of diffusions and jump diffusions. Smart Innovation, Systems and Technologies, vol. 173, pp. 293-314. Singapore, Springer, 2020
  8. Panteleev, A. V., Letova, T. A., Pomazueva, E. A. Parametric design of optimal in average fractional-order PID controller in flight control problem. Autom. Remote Control, 2018, vol. 79, no. 1, pp. 153-166
  9. Kahane, J. -P. Some Random Series of Functions. Cambridge, Cambridge University Press, 2008
  10. Gikhman, I. I., Skorokhod, A. V., Yadrenko, M. I. Teoriya veroyatnostei i matematicheskaya statistika [Probability Theory and Mathematical Statistics]. Kiev, Vishcha shkola Publ., 1988
  11. Sinitsyn, I. N. Kanonicheskie predstavleniya sluchainykh funktsii i ikh primenenie v zadachakh komp’yuternoi podderzhki nauchnykh issledovanii [Canonical Representations of Random Functions and their Application in Problems of Computer Support for Scientific Research]. Moscow, Torus Press, 2009
  12. Liptser, R., Shiryaev, A. N. Statistics of Random Processes. Springer, 2001
  13. Prigarin, S. M. Metody chislennogo modelirovaniya sluchainykh processov i polei [Numerical Modeling of Random Processes and Fields]. Novosibirsk, ICM & MG Publ., 2005
  14. Zhang, Z., Karniadakis, G. E. Numerical Methods for Stochastic Partial Differential Equations with White Noise. Springer, 2017
  15. Kuznetsov, D. F. Stochastic Differential Equations: Theory and Practic of Numerical Solution. With MATLAB Programs. Differencialnie Uravnenia i Protsesy Upravlenia, 2018, no. 4. (In Russ. )
  16. Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals based on generalized multiple Fourier series. Ufa Math. J. , 2019, vol. 11, no. 4, pp. 49-77
  17. Kuznetsov, D. F. Approximation of iterated Ito stochastic integrals of the second multiplicity based on the Wiener process expansion using Legendre polynomials and trigonometric functions. Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 4, pp. 32-52. (In Russ. )
  18. Ø ksendal, B. Stochastic Differential Equations. An Introduction with Applications. Springer-Verlag, 2000
  19. Rybakov, K. A., Rybin, V. V. [Algorithms and software for calculating automated control systems in the spectral form of a mathematical description]. Sovremennaya nauka: teoreticheskie, prakticheskie i innovacionnye aspekty razvitiya [Modern science: Theoretical, practical and innovative aspects of development], vol. 2, pp. 171-199. Rostov-on-Don: Scientific Cooperation Publ., 2018. (in Russ. )
  20. Rybakov, K. A. Applying spectral form of mathematical description for representation of iterated stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 4, pp. 1-31. (In Russ. )
  21. Rybakov, K. A., Rybin, V. V. Algorithms and software for calculating the spectral characteristic of the fractional-order integro-differential operator by Walsh functions. Vestnik SamGTU. Tekhnicheskie nauki, 2019, no. 4 (64), pp. 42-57. (In Russ. )
  22. Milstein, G. N., Tretyakov, M. V. Stochastic Numerics for Mathematical Physics. Springer-Verlag, 2004
  23. Averina, T. A. Statisticheskoe modelirovanie reshenii stokhasticheskikh differentsial’nykh uravnenii i sistem so sluchainoi strukturoi [Statistical Modeling of Solutions of Stochastic Differential Equations and Systems with a Random Structure]. Novosibirsk, Siberian Branch of the Russian Academy of Sciences Publ., 2019
  24. Shiryaev, A. N. Essentials of Stochastic Finance: Facts, Models, Theory. World Scientific, 1999

Full text (pdf)