ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Polynomial Solutions of Fractional Polynomial Differential Equations Generated by the Second Painleve Equation

Author(s):

Zilya Nailevna Khakimova

Mozhaisky Military Space Academy

vka@mail.ru

Larisa Nikolaevna Timofeeva

Mozhaisky Military Space Academy

vka@mail.ru

Oleg Valentinovich Zaitsev

BSTU «VOENMEH» named after D.F. Ustinov

zaytsev_oleg1997@mail.ru

Abstract:

A discrete pseudogroup of point, Bäcklund and tangent transformations for the 2nd Painlevé equation, closed in classes of ordinary differential equations with polynomial or fractional polynomial right-hand side, is constructed. A 36-vertex graph of this pseudogroup is constructed. The solutions in polynomials of all polynomial and fractional polynomial equations of the orbit of the 2nd Painlevé equation are calculated for some integer values of the parameter of the right-hand side. In addition, a method is indicated for finding solutions of the orbital equations of the 2nd coefficients on the right-hand side.

Keywords

References:

  1. Zaitsev V. F., Polianin A. D. Spravochnik po nelinejnym differencial'nym uravneniyam. Prilozheniya v mekhanike, tochnye resheniya [Handbook of Nonlinear Differential Equations. Applications in mechanics, exact solutions]. Moscow, Nauka Publ., 1993. 464 p
  2. Polyanin A. D., Zaytsev V. F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. - CRC Press. Boca Raton - London, 2018
  3. Kamke E. Differentialgleichungen Lö sungsmethoden und Lö sungen. - B. G. Teubner, Leipzig, 1977. - 246 p
  4. Painleve P. Sur les equations differentielles du second ordre et d'ordre superieur, dont 1'integrale generale est uniforme // Acta Math. - 1902. - Vol. 25. - P. 1-86
  5. Hakimova Z. N. Diskretnaja psevdogruppa vtorogo uravnenija Penleve i reshenija differencial'nyh uravnenij cherez vtoroj transcendent Penleve [Discrete pseudogroup of the second Painlevé equation and solutions of differential equations in terms of the second Painlevé transcendent] // Perspektivy nauki. - Tambov. - 2021. - № 5 (140). - P. 17-35. (In Russian)
  6. H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups. Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14. Springer-Verlag, Berlin-New York, 1980. ix+169 pp
  7. Jablonskij A. I. O racional'nyh reshenijah vtorogo uravnenija Penleve [On rational solutions of the second Painlevé equation] // A. I. Jablonskij / Vesti Akad. Nauk BSSR, Serija Fiziko-tehnicheskih nauk. - 1959. - Vol. 3. P. 30-35. [In Russian]
  8. Vorob'ev A. P. O racional'nyh reshenijah vtorogo uravnenija Penleve [On rational solutions of the second Painlevé equation] // Differencial'nye uravnenija. - 1965. - Vol. 1. - P. 79-81. (In Russian)
  9. Demina M. V., Kudrjashov N. A. Special'nye polinomy i racional'nye reshenija ierarhii vtorogo uravnenija Penleve [Special polynomials and rational solutions of the hierarchy of the second Painlevé equation] // Teoreticheskaya i Matematicheskaya Fizika. - 2007. - Vol. 153, No 1. - P. 58-67. (In Russian)
  10. Hakimova Z. N., Zajcev O. V. Drobno-polinomial'nye differencial'nye uravnenija: diskretnye gruppy i reshenija cherez transcendent 1-go uravnenija Penleve [Fractional polynomial differential equations: discrete groups and solutions through the transcendental of the 1st Painlevé equation] [Electronic resource] // Differencial'nye uravnenija i processy upravlenija. - 2021. - N 1(4). - P. 61-92. - URL: https://diffjournal.spbu.ru/RU/numbers/2021.1/article.1.4 (In Russian)

Full text (pdf)