ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Orthogonal Expansion of Multiple Stratonovich Stochastic Integrals

Author(s):

Konstantin Rybakov

Moscow Aviation Institute (National Research University)

rkoffice@mail.ru

Abstract:

Based on the properties of Hermite polynomials, which are orthogonal with respect to the probability density of the normal distribution, a representation of multiple Stratonovich stochastic integrals by Wiener processes in the form of orthogonal series is proposed. Multiple Stratonovich stochastic integrals is also represented as the sum of multiple Ito stochastic integrals and the mathematical expectation of the Stratonovich integral, i.e., the generalized Hu-Meyer formula is obtained.

Keywords

References:

  1. Rybakov, K. A. Orthogonal expansion of multiple Ito stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 3, pp. 109-140
  2. Ito, K. Multiple Wiener integral. Journal of the Mathematical Society of Japan, 1951, vol. 3, no. 1, pp. 157-169
  3. Hida, T., Ikeda, N. Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral. Proc. 5th Berkeley Symp. on Math. Stat. and Prob. 1967, vol. II, part 1, pp. 117-143
  4. Ogura, H. Orthogonal functionals of the Poisson process. IEEE Transactions on Information Theory, 1972, vol. 18, no. 4, pp. 473-481
  5. Hu, Y. -Z., Meyer, P. -A. Sur les integrales multiples de Stratonovitch. Seminaire de probabilites, 1988, vol. 22, pp. 72-81
  6. Sole, J. LL., Utzet, F. Stratonovich integral and trace. Stochastics and Stochastic Reports, 1990, vol. 29, no. 2, pp. 203-220
  7. Budhiraja, A. S. Multiple stochastic integrals and Hilbert space valued traces with applications to asymptotic statistics and non-linear filtering. Ph. D. Diss., The University of North Carolina, Chapel Hill, 1994
  8. Houdre, C., Perez-Abreu, V. (eds. ) Chaos Expansions, Multiple Wiener-Ito Integrals, and Their Applications. CRC Press, 1994
  9. Delgado, R. Multiple Ogawa, Stratonovich and Skorohod anticipating integrals. Stochastic Analysis and Applications, 1998, vol. 16, no. 5, pp. 859-872
  10. Sole, J. LL., Utzet, F. Integrale multiple de Stratonovich pour le processus de Poisson. Seminaire de probabilites, 1991, vol. 25, pp. 270-283
  11. Sole, J. LL., Utzet, F. Une note sur l’integrale multiple de Stratonovich pour le processus de Poisson. Seminaire de probabilites, 1992, vol. 26, pp. 410-414
  12. Farre, M., Jolis, M., Utzet, F. Multiple Stratonovich integral and Hu-Meyer formula for Levy processes. The Annals of Probability, 2010, vol. 38, no. 6, pp. 2136-2169
  13. Milstein, G. N. Numerical Integration of Stochastic Differential Equations. Kluwer Academic Publ., 1995
  14. Kloeden, P. E., Platen, E. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, 1995
  15. Averina, T. A. Statisticheskoe modelirovanie reshenii stokhasticheskikh differentsial’nykh uravnenii i sistem so sluchainoi strukturoi [Statistical Modeling of Solutions of Stochastic Differential Equations and Systems with a Random Structure]. Novosibirsk, Siberian Branch of the Russian Academy of Sciences Publ., 2019
  16. Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automation and Remote Control, 2018, vol. 79, no. 7, pp. 1240-1254
  17. Kuznetsov, D. F. On numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automation and Remote Control, 2019, vol. 80, no. 5, pp. 867-881
  18. Kuznetsov, D. F. Mean-Square Approximation of Iterated Ito and Stratonovich Stochastic Integrals: Method of Generalized Multiple Fourier Series. Application to Numerical Integration of Ito SDEs and Semilinear SPDEs. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 4, pp. A. 1-A. 788
  19. Rybakov, K. A. Application of Walsh series to represent Stratonovich iterated stochastic integrals. IOP Conference Series: Materials Science and Engineering, 2020, vol. 927, id 012080
  20. Rybakov, K. A. Using spectral form of mathematical description to represent Stratonovich iterated stochastic integrals. Smart Innovation, Systems and Technologies, vol. 217, pp. 287-304. Singapore, Springer, 2021
  21. Rybakov, K. A. Spectral method of analysis and optimal estimation in linear stochastic systems. International Journal of Modeling, Simulation, and Scientific Computing, 2020, vol. 11, no. 3, id 2050022
  22. Balakrishnan, A. V. Applied Functional Analysis. Springer-Verlag, 1981
  23. Gikhman, I. I., Skorokhod, A. V. Introduction to the Theory of Random Processes. Dover Publ., 1997
  24. Bateman, H., Erdelyi, A. Higher Transcendental Functions, vol. 2. McGraw-Hill Book Company, 1953
  25. Dobrushin, R. L., Minlos, R. A. Polynomials in linear random functions. Russian Mathematical Surveys, 1977, vol. 32, no. 2, pp. 71-127
  26. Birman, M. Sh. A simple embedding theorem for kernels of trace class integral operators in L2(Rm). Application to the Fredholm trace formula. St. Petersburg Mathematical Journal, 2016, vol. 27, pp. 327-331

Full text (pdf)