Orthogonal Expansion of Multiple Stratonovich Stochastic Integrals
Author(s):
Konstantin Rybakov
Moscow Aviation Institute (National Research University)
rkoffice@mail.ru
Abstract:
Based on the properties of Hermite polynomials, which are orthogonal with respect to
the probability density of the normal distribution, a representation of multiple
Stratonovich stochastic integrals by Wiener processes in the form of orthogonal
series is proposed. Multiple Stratonovich stochastic integrals is also represented
as the sum of multiple Ito stochastic integrals and the mathematical expectation
of the Stratonovich integral, i.e., the generalized Hu-Meyer formula is obtained.
Keywords
- Hu-Meyer formula
- iterated Stratonovich
- multiple Stratonovich stochastic integral
- orthogonal expansion
- stochastic integral
- Wiener process
References:
- Rybakov, K. A. Orthogonal expansion of multiple Ito stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 3, pp. 109-140
- Ito, K. Multiple Wiener integral. Journal of the Mathematical Society of Japan, 1951, vol. 3, no. 1, pp. 157-169
- Hida, T., Ikeda, N. Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral. Proc. 5th Berkeley Symp. on Math. Stat. and Prob. 1967, vol. II, part 1, pp. 117-143
- Ogura, H. Orthogonal functionals of the Poisson process. IEEE Transactions on Information Theory, 1972, vol. 18, no. 4, pp. 473-481
- Hu, Y. -Z., Meyer, P. -A. Sur les integrales multiples de Stratonovitch. Seminaire de probabilites, 1988, vol. 22, pp. 72-81
- Sole, J. LL., Utzet, F. Stratonovich integral and trace. Stochastics and Stochastic Reports, 1990, vol. 29, no. 2, pp. 203-220
- Budhiraja, A. S. Multiple stochastic integrals and Hilbert space valued traces with applications to asymptotic statistics and non-linear filtering. Ph. D. Diss., The University of North Carolina, Chapel Hill, 1994
- Houdre, C., Perez-Abreu, V. (eds. ) Chaos Expansions, Multiple Wiener-Ito Integrals, and Their Applications. CRC Press, 1994
- Delgado, R. Multiple Ogawa, Stratonovich and Skorohod anticipating integrals. Stochastic Analysis and Applications, 1998, vol. 16, no. 5, pp. 859-872
- Sole, J. LL., Utzet, F. Integrale multiple de Stratonovich pour le processus de Poisson. Seminaire de probabilites, 1991, vol. 25, pp. 270-283
- Sole, J. LL., Utzet, F. Une note sur l’integrale multiple de Stratonovich pour le processus de Poisson. Seminaire de probabilites, 1992, vol. 26, pp. 410-414
- Farre, M., Jolis, M., Utzet, F. Multiple Stratonovich integral and Hu-Meyer formula for Levy processes. The Annals of Probability, 2010, vol. 38, no. 6, pp. 2136-2169
- Milstein, G. N. Numerical Integration of Stochastic Differential Equations. Kluwer Academic Publ., 1995
- Kloeden, P. E., Platen, E. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, 1995
- Averina, T. A. Statisticheskoe modelirovanie reshenii stokhasticheskikh differentsial’nykh uravnenii i sistem so sluchainoi strukturoi [Statistical Modeling of Solutions of Stochastic Differential Equations and Systems with a Random Structure]. Novosibirsk, Siberian Branch of the Russian Academy of Sciences Publ., 2019
- Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automation and Remote Control, 2018, vol. 79, no. 7, pp. 1240-1254
- Kuznetsov, D. F. On numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automation and Remote Control, 2019, vol. 80, no. 5, pp. 867-881
- Kuznetsov, D. F. Mean-Square Approximation of Iterated Ito and Stratonovich Stochastic Integrals: Method of Generalized Multiple Fourier Series. Application to Numerical Integration of Ito SDEs and Semilinear SPDEs. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 4, pp. A. 1-A. 788
- Rybakov, K. A. Application of Walsh series to represent Stratonovich iterated stochastic integrals. IOP Conference Series: Materials Science and Engineering, 2020, vol. 927, id 012080
- Rybakov, K. A. Using spectral form of mathematical description to represent Stratonovich iterated stochastic integrals. Smart Innovation, Systems and Technologies, vol. 217, pp. 287-304. Singapore, Springer, 2021
- Rybakov, K. A. Spectral method of analysis and optimal estimation in linear stochastic systems. International Journal of Modeling, Simulation, and Scientific Computing, 2020, vol. 11, no. 3, id 2050022
- Balakrishnan, A. V. Applied Functional Analysis. Springer-Verlag, 1981
- Gikhman, I. I., Skorokhod, A. V. Introduction to the Theory of Random Processes. Dover Publ., 1997
- Bateman, H., Erdelyi, A. Higher Transcendental Functions, vol. 2. McGraw-Hill Book Company, 1953
- Dobrushin, R. L., Minlos, R. A. Polynomials in linear random functions. Russian Mathematical Surveys, 1977, vol. 32, no. 2, pp. 71-127
- Birman, M. Sh. A simple embedding theorem for kernels of trace class integral operators in L2(Rm). Application to the Fredholm trace formula. St. Petersburg Mathematical Journal, 2016, vol. 27, pp. 327-331