ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

On Modified Spline Collocations Method for Solving the Fredholm Integral Equation

Author(s):

Egor K. Kulikov

St. Petersburg State University
Department of Parallel Algorithms
Post-graduate student
Russia, 199034, Saint-Petersburg, Universitetskaya nab., 7/9

egor.k.kulikov@gmail.com

Anton A. Makarov

St. Petersburg State University
Department of Parallel Algorithms
Professor, Dr. Sci., docent
Russia, 199034, Saint-Petersburg, Universitetskaya nab., 7/9

a.a.makarov@spbu.ru

Abstract:

A numerical method to solve a Fredholm integral equation of the second kind is studied. This approach is based on a collocation method and Sloan iterations. Our solution is represented by a linear combination of minimal splines, and the coefficients are calculated by a method of local approximation (quasi-interpolation). The results of numerical experiments demonstrating how the quality of approximation can be improved by using minimal trigonometric splines and corresponding functionals in comparison with several earlier suggested approaches are presented.

Keywords

References:

  1. S. B. Stechkin, Yu. N. Subbotin, Splines in computational mathematics. М., Nauka Publ., 1976. 272 p
  2. Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metodi splayn-functsii [Methods of spline-functions]. М. 1980. 352~с
  3. L. L. Schumaker, Spline functions: basic theory. John Wiley and Sons, Inc., New York, 1981
  4. C. de Boor, A Practical Guide to Splines. Springer-Verlag New York (revised edition), 2001
  5. B. I. Kvasov, Metodi izogeometricheskoi approximatsii splaynami [Methods Isogeometric Approximation Splines]. М. : Физматлит, 2006
  6. Demyanovich Yu. K., Lokalnaya approximatsiya na mnogoobraziyah I minimalnie splaini [Local Approximation on a Manifold and Minimal Splines], St. Petersburg State University (1994)
  7. C. Allouch, P. Sablonniere, D. Sbibih, A modified Kulkarni's method based on a discrete spline quasi-interpolant. Mathematics and Computers in Simulation vol. 81 2011, 1991-2000
  8. C. Dagnino, S. Remogna, P. Sablonniere, On the solution of Fredholm integral equation based on spline quasi-interpolating projects. BIT Numerical Mathematics vol. 54(4) 2014 979-1008
  9. I. Sloan, Improvement by iteration for compact operator equations. Math. Comp. vol. 30 1976, 758-764
  10. R. Kulkarni, On improvement of the iterated Galerkin solution of the second kind integral equations. J. Numer. Math. vol. 13 2005, 205-218
  11. T. Lyche, L. L. Shumaker, Quasi-interpolants Based on Trigonometric Splines. J. Approx. Theor. vol. 95 1998, 280-309
  12. P. Sablonniere, Quadratic spline quasi-interpolants on bounded domains of R^d, d = 1, 2, 3. Rend. Sem. Mat., vol. 61(3) 2003, 229-246
  13. P. Constantini, C. Manni, F. Pelosi, M. Lucia Sampoli, Quasi-interpolation in Isogeometric Analysis Based on Generalized B-splines. Computer Aided Geometric Design vol. 27(8) 2010 655-668
  14. W. Gao, Z. Wu, A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines. J. of Comp. App. Math. vol. 271 2014, 20-30
  15. Yu. K. Demyanovich, Gladkost prostranstv splayinov i vspleskovie razlozheniya [Smoothness of spline spaces and wavelets decompositions]. Dokl. RAN. 2005. 401(4), 1-4
  16. O. M. Kosogorov, A. A. Makarov, On Some Piecewise Quadratic Spline Functions. Dimov I., Farago I., Vulkov L. (eds) Numerical Analysis and Its Applications. NAA 2016. Lecture Notes in Computer Science, vol. 10187 (2017), 448-455
  17. A. A. Makarov, Construction of Splines of Maximal Smoothness. J. Math. Sci. (United States), vol. 178(6) 2011, 589—604
  18. Yu. K. Demyanovich, A. A. Makarov, Necessary and Sufficient Nonnegativity Conditions for Second-order Coordinate Trigonometric Splines. Vestnik St. Petersburg University: Mathematics, vol. 50(1) 2017, 5—10
  19. E. K. Kulikov, A. A. Makarov, On de Boor-Fix Type Functionals for Minimal Splines. Topics in Classical and Modern Analysis (Applied and Numerical Harmonic Analysis), 2019, 211-225
  20. E. K. Kulikov, A. A. Makarov, On Approximation by Hyperbolic Splines. J. Math. Sci. (United States), vol. 240(6) 2019 822—832
  21. E. K. Kulikov, A. A. Makarov, O postroenii approximatsionnih functsionalov dlya minimalnih splayiov [On the constructing of approximation functionals to minimal splines]. // Zapiski nauchnih seminarov POMI, vol. 504 2021 136—156 (In Russ. ) Available at: https://www.pdmi.ras.ru/znsl/2021/v504/abs136.html

Full text (pdf)